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ON STARLIKENESS, CONVEXITY,
AND CLOSE-TO-CONVEXITY

OF HYPER-BESSEL FUNCTION

İBRAHİM AKTAŞ1

Communicated by A.K. Mirmostafaee

Abstract. In the present investigation, our main aim is to derive some con-
ditions on starlikeness, convexity, and close-to-convexity of normalized hyper-
Bessel functions. Also we give some similar results for classical Bessel functions
by using the relationships between hyper-Bessel and Bessel functions. As a re-
sult of the obtained conditions, some examples are also given.

1. Introduction and preliminaries

Bessel and related functions are frequently used in engineering and applied
sciences. For this reason, they have a long history in mathematical studies.
Most of mathematicians have investigated some properties of Bessel and related
functions in different directions. Some of the most important properties of these
functions are geometric properties like univalence, starlikeness, convexity, and
close-to convexity. In 1960, first studies on the univalence of Bessel function have
been done by Brown in [20], while Kreyszig and Todd determined the radius of
univalence of Bessel functions in [25]. In 1984, De Branges has solved famous
Bieberbach conjecture by using hyper geometric functions. After this solution,
geometric properties of some special functions have become very attractive since
hyper geometric series and Bessel type special functions are closely related. As a
result, most of mathematicians have begun to study on geometric properties of
special functions like Bessel, Struve, Lommel, Mittag–Leffler, Wright, and their
some extensions. Some of the obtained geometric properties of above mentioned
functions can be found in [1, 3–10, 12–14, 16–19]. In fact, the authors have used
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some properties of zeros of the mentioned functions to investigate their geometric
properties. For the properties of zeros of some special functions, one can refer to
papers [11, 15,21,23,24,27,28] and the references therein.

The Bessel function is defined by the following infinite series:

Jν(z) =
∑
n≥0

(−1)n

n!Γ (ν + n+ 1)

(z
2

)2n+ν
, z ∈ C, (1.1)

where Γ(z) denotes the familiar gamma function. In the literature, there are many
investigations on Bessel and related functions. For example, some geometric
properties of Lommel functions have been studied by using basic concepts of
geometric function theory in [29]. In addition, some geometric properties of
hyper-Bessel function have been investigated in papers [1, 2, 5]. Motivated by
some earlier works, in this study, our main aim is to obtain some new geometric
properties of hyper-Bessel functions.

Now, we would like to remind the definition of hyper-Bessel function. The
hyper-Bessel function is defined by (see [22])

Jγd(z) =
∑
n≥0

(−1)n
(

z
d+1

)n(d+1)+γ1+···+γd

n!Γ (γ1 + n+ 1) . . .Γ (γd + n+ 1)
. (1.2)

Now, we are going to remind some basic definitions in geometric function theory
and give a lemma, which will be used in order to prove our main results.

Let Dr be the open disk {z ∈ C : |z| < r} with radius r > 0 and D1 = D. Let
A denote the class of analytic functions f : Dr → C,by

f(z) = z +
∑
n≥2

anz
n,

which satisfy the normalization condition f(0) = f ′(0)−1 = 0. By S we mean the
class of functions belonging to A, which are univalent in Dr. Also, for 0 ≤ α < 1,
by S?(α), C(α), and K(α) we denote the subclasses of A consisting of functions
which are starlike, convex, and close-to convex of order α, respectively. The
analytic characterizations of these subclasses are

S?(α) =

{
f : f ∈ A and <

(
zf ′(z)

f(z)

)
> α for z ∈ D

}
,

C(α) =

{
f : f ∈ A and <

(
1 +

zf ′′(z)

f ′(z)

)
> α for z ∈ D

}
,

and

K(α) =

{
f : f ∈ A,<

(
f ′(z)

g′(z)

)
> α for z ∈ D and g ∈ C(α)

}
,

respectively.
The following result, which is given by Owa et al. [26, p. 67, Corollary 2], will

be required in order to prove the close-to-convexity of the function fγd(z).
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Lemma 1.1. If the function f ∈ A satisfies the inequality

|zf ′′(z)| < 1− α
4

(z ∈ D, 0 ≤ α < 1),

then

< (f ′(z)) >
1 + α

2
(z ∈ D, 0 ≤ α < 1).

Since the hyper-Bessel function z 7→ Jγd , which is given by (1.2), does not
belong to the class A, we first perform a natural normalization. The normalized
hyper-Bessel function Jγd(z) is defined by

Jγd(z) =

(
z
d+1

)γ1+···+γd
Γ(γ1 + 1) . . .Γ(γd + 1)

Jγd(z). (1.3)

By combining equalities (1.2) and (1.3), we get the following infinite series rep-
resentation:

Jγd(z) =
∑
n≥0

(−1)n
(

z
d+1

)n(d+1)

n!(γ1 + 1)n . . . (γd + 1)n
,

where (β)n is the known Pochhammer symbol and it is defined by (β)0 = 1 and

(β)n = β(β + 1) . . . (β + n− 1) =
Γ(β + n)

Γ(β)

for n ≥ 1. As a result, we have that the function

fγd(z) = zJγd(z) = z +
∑
n≥1

(−D)n

n!(γ1 + 1)n . . . (γd + 1)n
zn(d+1)+1

is in the class A, where D = 1
(d+1)d+1 .

We would like to remind here that the following well-known inequalities

(β)n ≤ (β)n (1.4)

and

2n−1 ≤ n! (1.5)

are true for n ∈ {1, 2, . . . }. Also, we are going to use the following well-known
triangle inequality

|z1 + z2| ≤ |z1|+ |z2| (z1, z2 ∈ C) (1.6)

and reverse triangle inequality

|z1 − z2| ≥ ||z1| − |z2|| (z1, z2 ∈ C) (1.7)

in order to prove our assertions. In addition, the following geometric series sums∑
n≥1

rn−1 =
1

1− r
(|r| < 1), (1.8)

∑
n≥1

nrn−1 =
1

(1− r)2
(|r| < 1), (1.9)



ON STARLIKENESS, CONVEXITY, AND CLOSE-TO-CONVEXITY 127

and ∑
n≥1

n2rn−1 =
1 + r

(1− r)3
(|r| < 1) (1.10)

will be used to prove our results.

2. Main results

In this section, we present our main results.

Theorem 2.1. Let α ∈ [0, 1), κ1 =
∏d

i=1 (γi + 1), and κ2 =
∏d

i=1 (γi + 2) > 0. If

4κ2
(d+ 1)d (2κ2 −D) [κ1 (2κ2 −D)− 2Dκ2]

< 1− α,

then for all z ∈ D the hyper-Bessel function fγd(z) is starlike of order α.

Proof. In order to prove the starlikeness of order α of the function z 7→ fγd , it is

enough to show that the inequality
∣∣∣ zf ′γd (z)fγd (z)

− 1
∣∣∣ < 1− α holds true for α ∈ [0, 1)

and z ∈ D. By using the infinite series representation of the function z 7→ fγd ,
the identity (β)n = β(β + 1)n−1 and the inequalities, which are given by (1.4),
(1.5), and (1.6), we can write that∣∣∣∣f ′γd(z)− fγd(z)

z

∣∣∣∣ =

∣∣∣∣∣∑
n≥1

n(d+ 1)(−D)n

n!
∏d

i=1(γi + 1)n
zn(d+1)

∣∣∣∣∣
=
d+ 1

κ1

∣∣∣∣∣∑
n≥1

n(−D)n

n!
∏d

i=1(γi + 2)n−1
zn(d+1)

∣∣∣∣∣
≤ (d+ 1)D

κ1

∣∣∣∣∣∑
n≥1

n(−D)n−1

2n−1
∏d

i=1(γi + 2)n−1

∣∣∣∣∣
=

(d+ 1)D

κ1

∑
n≥1

n

(
D

2κ2

)n−1
.

Now, using the known geometric series sum, which is given by (1.9), for
∣∣∣ D2κ2 ∣∣∣ < 1,

we get ∣∣∣∣f ′γd(z)− fγd(z)

z

∣∣∣∣ ≤ 4κ2
2

(d+ 1)dκ1(2κ2 −D)2
. (2.1)

In addition, using the reverse triangle inequality which is given by (1.7) implies
that ∣∣∣∣fγd(z)

z

∣∣∣∣ =

∣∣∣∣∣1 +
∑
n≥1

(−D)n

n!
∏d

i=1(γi + 1)n
zn(d+1)

∣∣∣∣∣
≥ 1− D

κ1

∑
n≥1

(
D

2κ2

)n−1
.
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For
∣∣∣ D2κ2 ∣∣∣ < 1, we obtain that

∣∣∣∣fγd(z)

z

∣∣∣∣ ≥ κ1(2κ2 −D)− 2Dκ2
κ1(2κ2 −D)

. (2.2)

By considering inequalities (2.1) with (2.2), we have that∣∣∣∣zf ′γd(z)

fγd(z)
− 1

∣∣∣∣ ≤ 4κ2
(d+ 1)d (2κ2 −D) [κ1 (2κ2 −D)− 2Dκ2]

.

Thus, the function z 7→ fγd is starlike of order α under the assumption. �

Theorem 2.2. Let α ∈ [0, 1), κ1 =
∏d

i=1 (γi + 1), and κ2 =
∏d

i=1 (γi + 2) > 0. If

4(d+ 1)Dκ2
2[2κ2(d+ 2) + dD]

(2κ2 −D) {κ1(2κ2 −D)2 − 2κ2D[2κ2 (d+ 2)−D]}
< 1− α,

then for all z ∈ D, the hyper-Bessel function fγd(z) is convex of order α.

Proof. For the convexity of order α of the function fγd(z), it is enough to show

that the inequality
∣∣∣ zf ′′γd (z)f ′γd

(z)

∣∣∣ < 1−α holds true for α ∈ [0, 1) and z ∈ D. From the

infinite series representation of the function fγd(z) and the inequalities, which are
given by (1.4), (1.5), and (1.6), we can write that

∣∣zf ′′γd(z)
∣∣ =

∣∣∣∣∣∑
n≥1

n(d+ 1)[n(d+ 1) + 1](−D)n

n!
∏d

i=1(γi + 1)n
zn(d+1)

∣∣∣∣∣
=

∣∣∣∣∣∑
n≥1

n2(d+ 1)2(−D)n

n!
∏d

i=1(γi + 1)n
zn(d+1) +

∑
n≥1

n(d+ 1)(−D)n

n!
∏d

i=1(γi + 1)n
zn(d+1)

∣∣∣∣∣
≤(d+ 1)2D

κ1

∑
n≥1

n2 Dn−1

n!
∏d

i=1(γi + 2)n−1

+
(d+ 1)D

κ1

∑
n≥1

n
Dn−1

n!
∏d

i=1(γi + 2)n−1

≤(d+ 1)2D

κ1

∑
n≥1

n2

(
D

2κ2

)n−1
+

(d+ 1)D

κ1

∑
n≥1

n

(
D

2κ2

)n−1
.

Now, using the known geometric series sums which are given by (1.9) and (1.10)

for
∣∣∣ D2κ2 ∣∣∣ < 1, we have

∣∣zf ′′γd(z)
∣∣ ≤ 4(d+ 1)Dκ22[κ2(2d+ 4) + dD]

κ1(2κ2 −D)3
. (2.3)
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From the inequalities, which are given by (1.4), (1.5), and (1.7), it can be easily
seen that∣∣f ′γd(z)

∣∣ =

∣∣∣∣∣1 +
∑
n≥1

[n(d+ 1) + 1](−D)n

n!
∏d

i=1(γi + 1)n
zn(d+1)

∣∣∣∣∣
≥ 1−

∑
n≥1

[n(d+ 1) + 1]Dn

n!
∏d

i=1(γi + 1)n

= 1−

[
(d+ 1)D

κ1

∑
n≥1

n
Dn−1

n!
∏d

i=1(γi + 2)n−1
+
D

κ1

∑
n≥1

Dn−1

n!
∏d

i=1(γi + 2)n−1

]

≥ 1−

[
(d+ 1)D

κ1

∑
n≥1

n

(
D

2κ2

)n−1
+
D

κ1

∑
n≥1

(
D

2κ2

)n−1]
.

Now, by making use of the geometric series sums which are given (1.8) and (1.9),
we get ∣∣f ′γd(z)

∣∣ ≥ κ1(2κ2 −D)2 − 2κ2D(κ2(2d+ 4)−D)

κ1(2κ2 −D)2
(2.4)

for
∣∣∣ D2κ2 ∣∣∣ < 1. Finally, if we consider inequality (2.3) with (2.4), then we have∣∣∣∣zf ′′γd(z)

f ′γd(z)

∣∣∣∣ ≤ 4(d+ 1)Dκ2
2[2κ2(d+ 2) + dD]

(2κ2 −D) {κ1(2κ2 −D)2 − 2κ2D[2κ2 (d+ 2)−D]}
.

As a consequence, the proof is completed. �

Theorem 2.3. Let α ∈ [0, 1), κ1 =
∏d

i=1 (γi + 1), and κ2 =
∏d

i=1 (γi + 2) > 0. If

16(d+ 1)Dκ2
2[2κ2(d+ 2) + dD]

κ1(2κ2 −D)3
< 1− α,

then for all z ∈ D the hyper-Bessel function fγd(z) is close-to-convex of order 1+α
2

and so <
(
f ′γd(z)

)
> 1+α

2
.

Proof. It is known from inequality (2.3) that∣∣zf ′′γd(z)
∣∣ ≤ 4(d+ 1)Dκ22[κ2(2d+ 4) + dD]

κ1(2κ2 −D)3

for all z ∈ D. By using Lemma(1.1), it is clear that∣∣zf ′′γd(z)
∣∣ < 1− α

4

for

0 ≤ α < 1− 16(d+ 1)Dκ2
2[2κ2(d+ 2) + dD]

κ1(2κ2 −D)3
.

This implies that the hyper-Bessel function fγd(z) is close-to-convex of order 1+α
2

and so <
(
f ′γd(z)

)
> 1+α

2
. �
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It is important to mention here that there is a close relationship between hyper-
Bessel functions and classical Bessel functions. More precisely, by putting d = 1
and γ1 = ν in expressions (1.2), we have the classical Bessel function which is
given by (1.1). By considering this close relationship in our main theorems, we
have the following results.

Corollary 2.4. Let α ∈ [0, 1) and z ∈ D. If 8(ν+2)
(8ν+15)(8ν2+21ν+11)

< 1− α, then the

function fν(z) = 2νΓ(ν + 1)z1−νJν(z) is starlike of order α.

Corollary 2.5. Let α ∈ [0, 1) and z ∈ D. If 32(ν+2)2(24ν+49)
(8ν+15)(64ν3+256ν2+275ν+37)

< 1 − α,

then the function fν(z) = 2νΓ(ν + 1)z1−νJν(z) is convex of order α.

Corollary 2.6. Let α ∈ [0, 1) and z ∈ D. If 128(ν+2)2(24ν+49)
(ν+1)(8ν+15)3

< 1 − α, then the

function fν(z) = 2νΓ(ν + 1)z1−νJν(z) is close-to-convex of order 1+α
2

.

3. Applications

It is well-known from [9, p. 13–14] that the basic trigonometric functions can
be represented by the classical Bessel function Jν for appropriate values of the
parameter ν. Clearly, for ν = −1

2
, ν = 1

2
and ν = 3

2
, respectively, we have the

following equalities:

J− 1
2

=

√
2

πz
cos z, J 1

2
=

√
2

πz
sin z and J 3

2
=

√
2

πz

(
sin z

z
− cos z

)
.

By considering the above special cases, some examples can be given.

Example 3.1. Let α ∈ [0, 1) and z ∈ D. The following assertions hold true:

i. For α < α1
∼= 0.564, the function f− 1

2
(z) = z cos z is starlike of order α.

ii. For α < α2
∼= 0.955, the function f 1

2
(z) = sin z is starlike of order α.

iii. For α < α3
∼= 0.983, the function f 3

2
(z) = 3

z2
(sin z − z cos z) is starlike of

order α.

iv. For α < α4
∼= 0.005, the function f 3

2
(z) = 3

z2
(sin z − z cos z) is convex of

order α.
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11. Á. Baricz, C.G. Kokologiannaki, T.K. Pogány, Zeros of Bessel function derivatives, Proc.
Amer. Math. Soc. 146 (2018), no. 1, 209–222.
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