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LOCAL CONVERGENCE OF A NOVEL EIGHTH ORDER
METHOD UNDER HYPOTHESES

ONLY ON THE FIRST DERIVATIVE
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Abstract. We expand the applicability of eighth order-iterative method stud-
ied by Jaiswal in order to approximate a locally unique solution of an equation
in Banach space setting. We provide a local convergence analysis using only
hypotheses on the first Frechet-derivative. Moreover, we provide computable
convergence radii, error bounds, and uniqueness results. Numerical examples
computing the radii of the convergence balls as well as examples where earlier
results cannot apply to solve equations but our results can apply are also given
in this study.

1. Introduction

In this study, we are concerned with the problem of approximating a locally
unique solution x∗ of the equation

F (x) = 0, (1.1)

where F is a Frechet-differentiable operator defined on a convex subset D of a Ba-
nach space X with values in a Banach space Y. Many problems in computational
sciences and also in engineering, mathematical biology, mathematical economics,
and other disciplines can be written in the form of an equation like (1.1) by using
mathematical modeling [1–28]. The solutions of such equations can rarely be
found in a closed form. That is why most solution methods for such equations
are usually iterative.
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Higher order convergence methods such as the Chebyshev–Halley-type meth-
ods [2, 5, 13] require the computation of derivatives of order higher than one,
which are very expensive in general. However, these methods are important for
faster convergence, especially in cases of stiff systems of equations. Recently
many researchers have tried to find fast convergence methods using only the first
derivative or divided differences of order one [13]. In particular, Jaiswal studied
the convergence of the multistep method [17] defined for each n = 0, 1, 2, . . . by

rn = xn − F ′(xn)−1F (xn),

yn =
1

2
(rn − xn),

zn =
1

3
(4yn − xn),

un = yn + (F ′(xn)− F ′(zn))−1F (xn)

vn = un + 2(F ′(xn)− 3F ′(zn))−1F (un) (1.2)

and

xn+1 = vn + 2(F ′(xn)− 3F ′(zn))−1F (vn),

where x0 ∈ D is an initial point. The eighth order of convergence was shown by
using a hypothesis reaching up to the Lipschitz continuity

‖F ′′′(x)− F ′′′(y)‖ ≤ α‖x− y‖ (1.3)

for some α > 0 and each x, y ∈ D, although only the first derivative appears in
method (1.2). These hypotheses limit the applicability of method (1.2). As a
motivational example, define function F on D = [−1

2
, 5
2
] by

F (x) =

{
x3 lnx2 + x5 − x4, x 6= 0,

0, x = 0.

We have that x∗ = 1,

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

and

F ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

The function F ′′′(x) is unbounded on D. Hence, (1.3) and consequently the re-
sults in [17] cannot be applied to solve equation (1.1). We provide a local con-
vergence analysis using only hypotheses on the first Frechet-derivative. This way
we expand the applicability of these methods. Moreover, we provide computable
convergence radii, error bounds on the distances ‖xn − x∗‖, and uniqueness re-
sults. Furthermore, we use the computational order of convergence (COC) and
the approximate computational order of convergence (ACOC) (which do not de-
pend on higher than one Frechet-derivative) to determine the order of convergence
of method (1.2). Local results are important, because they provide the degree
of difficulty for choosing initial points. Our idea can be used on other iterative
methods.
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This paper is organized as follows: Section 2 contains the local convergence
analysis of method (1.2). The numerical examples are presented in the concluding
Section 3.

2. Local convergence

The local convergence analysis of method (1.2) is based on some scalar func-
tions and parameters. Let q0 be a continuous, nondecreasing function defined on
the interval [0,+∞) with values in [0,+∞) and satisfying q0(0) = 0. Define the
parameter ρ0 by

ρ0 := sup{t ≥ 0 : q0(t) < 1}. (2.1)

Let also q and q1 be continuous, nondecreasing functions defined on the interval
[0,ρ0) with values in [0,+∞) and satisfying q(0) = 0. Moreover, define functions
gi, hi, i = 1, 2, 3, p, and hp on the interval [0,ρ0) by

g1(t) =

∫ 1

0
q((1− θ)t)dθ
1− q0(t)

,

g2(t) =
1

2
(1 + g1(t)),

g3(t) =
1

3
(1 + 4g1(t)),

hi(t) = gi(t)− 1,

p(t) =
1

2
(q0(t) + 3q0(g3(t)t)),

and
hp(t) = p(t)− 1.

We have that h1(0) = −1 < 0, h2(0) = −1
2
< 0, h3(0) = −2

3
< 0, hp(t) = −1 <

0 and hi(t)→ +∞, hp(t)→ +∞ as t→ r−p . It then follows from the intermediate
value theorem that functions hi and hp have zeros in the interval (0,ρ0). Denote
by ρi and ρp the smallest such zeros for functions hi and hp, respectively.

Furthermore, define functions gj, hj, j = 4, 5, 6 on the interval [0,ρp) by

g4(t) = g1(t) +
3(q0(t) + q0(g3(t)t)

∫ 1

0
q1(θt)dθ

4(1− p(t))(1− q0(t))
, (2.2)

g5(t) = (1 +

∫ 1

0
q1(θg4(t)t)dθ

1− p(t)
)g4(t),

g6(t) = (1 +

∫ 1

0
q1(θg5(t)t)dθ

1− p(t)
)g5(t),

and hj(t) = gj(t)−1. Then, again we have that hj(0) = −1 < 0 and hj(t)→ +∞
as t→ ρ−p . Denote by ρj the smallest zeros of functions hj on the interval (0,ρp).

Define the radius of convergence r by

ρ := min{ρi}, i = 1, 2, . . . , 6 (2.3)

Then, we have that for each t ∈ [0, r)

0 ≤ gi(t) < 1, i = 1, 2, . . . , 6, (2.4)
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and

0 ≤ p(t) < 1. (2.5)

Let U(γ, ρ) and Ū(γ, ρ) stand, respectively, for the open and closed balls in X
with center γ ∈ X and of radius ρ > 0. Next, we present the local convergence
analysis of method (1.2) using the preceding notation.

Theorem 2.1. Let F : D ⊂ X → Y be a continuously Fréchet differentiable
operator. Suppose that there exist x∗ ∈ D and continuous and nondecreasing
function q0 : [0,+∞)→ [0,+∞), with q0(0) = 0 such that for each x ∈ D

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X) (2.6)

and

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ q0(‖x− x∗‖); (2.7)

there exist q, q1 : [0,+∞) → [0,+∞) continuous, nondecreasing functions satis-
fying q(0) = 0 such that for each x, y ∈ D0 = D ∩ U(x∗, ρ0),

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ q(‖x− y‖), (2.8)

and

‖F ′(x∗)−1F ′(x)‖ ≤ q1(‖x− x∗‖), (2.9)

and

Ū(x∗, r) ⊆ D, (2.10)

where ρ0 and r are given by (2.1) and (2.3), respectively. Then, the sequence {xn}
generated for x0 ∈ U(x∗, ρ) − {x∗} by method (1.2) is well defined in U(x∗, ρ),
remains in U(x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover, the
following estimates hold

‖rn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ, (2.11)

‖yn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.12)

‖zn − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.13)

‖un − x∗‖ ≤ g4(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.14)

‖vn − x∗‖ ≤ g5(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.15)

and

‖xn+1 − x∗‖ ≤ g6(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.16)

where the functions gi, i = 1, 2, 3, 4, 5, 6 are defined previously. Furthermore, if
there exists R > ρ such that ∫ 1

0

q0(θR)dθ < 1, (2.17)

then the limit point x∗ is the only solution of the equation F (x) = 0 in D1 =
D ∩ Ū(x∗, R).
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Proof. Using mathematical induction, we show that the sequence {xn} is well
defined in U(x∗, ρ), remains in U(x∗, ρ) for each n = 0, 1, 2, . . . and converges to
x∗, so that the estimates (2.11)–(2.16) are satisfied. Using (2.1), (2.3), (2.7), and
the hypothesis x0 ∈ U(x∗, ρ)− {x∗}, we have that

‖F ′(x∗)−1(F ′(x)− F ′(x∗)‖ ≤ q0(‖x− x∗‖) ≤ q0(ρ) < 1. (2.18)

It follows from (2.18) and the Banach lemma on invertible operators [2–6,18,25],
that F ′(x)−1 ∈ L(Y,X) and

‖F ′(x0)−1F ′(x∗)‖ ≤
1

1− q0(‖x− x∗‖)
. (2.19)

The points r0, y0 and z0 are also well defined by the first three substeps of method
(1.2) for n = 0, respectively. We can write by the first substeps of method (1.2)
for n = 0,

r0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0). (2.20)

By (2.1), (2.3), (2.4) (for i=1), (2.6), (2.8), (2.19) and (2.20), we get in turn that

‖r0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖‖
∫ 1

0
F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))

−F ′(x0))(x0 − x∗)dθ

≤
∫ 1
0 q((1−θ)‖x0−x

∗‖)‖x0−x∗‖dθ
1−q0(‖x0−x∗‖)

= g1(‖x0 − x∗‖)‖x0 − x∗‖

≤ ‖x0 − x∗‖ < r,

(2.21)

which shows (2.11) for n = 0 and r0 ∈ U(x∗, ρ). Notice also that we used that
x∗+θ(x0−x∗) ∈ U(x∗, ρ), for each θ ∈ [0, 1] ‖x∗+θ(x0−x∗)−x∗‖ = θ‖x0−x∗‖ < ρ,
for each θ ∈ [0, 1], so x∗+θ(x0−x∗) ∈ U(x∗, ρ). By (2.24)(for i=2 and i=3),(2.21)
and the second substep and third substep of method (1.2), we get in turn that

‖y0 − x∗‖ = ‖1
2
(r0 + x0)− x∗‖

= 1
2
‖(r0 − x0) + (x0 − x∗)‖

≤ 1
2
[‖r0 − x0‖+ ‖x0 − x∗‖]

≤ 1
2
[g1(‖x0 − x∗‖) + 1]‖x0 − x∗‖

= g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ

(2.22)
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and

‖z0 − x∗‖ = ‖1
3
[(4y0 − x0)− x∗‖

≤ 4
3
‖(y0 − x∗)‖+ 1

3
‖x0 − x∗‖

≤ 1
3
[4g1(‖x0 − x∗‖) + 1]‖x0 − x∗‖

= g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ,

(2.23)

which shows (2.12), (2.13), y0 ∈ U(x∗, ρ), and z0 ∈ U(x∗, ρ).
Next, we must show that (F ′(x0) − 3F ′(z0))

−1 ∈ L(Y,X). In view of (2.3),
(2.5), (2.7), and (2.23), we obtain in turn that

‖(2F ′(x∗))−1[F ′(x0)− 3F ′(z0)]‖

≤ 1
2
‖F ′(x∗)−1[(F ′(x0)− F ′(x∗))− 3(F ′(z0)− F ′(x∗))]‖

≤ 1
2
[‖F ′(x∗)−1[F ′(x0)− F ′(x∗)]‖+ 3‖F ′(x∗)−1(F ′(z0)− F ′(x∗))‖]

≤ 1
2
[q0(‖x∗ − x0‖) + 3q0(‖z0 − x∗‖)

≤ 1
2
[q0(‖x∗ − x0‖) + 3q0(g3(‖x∗ − x0‖)‖x∗ − x0‖)]

= p(‖x∗ − x0‖) ≤ p(ρ) < 1,

(2.24)

so, (F ′(x0)− 3F ′(z0))
−1 ∈ L(Y,X) and

‖(F ′(x0)− 3F ′(z0))
−1F ′(x∗)‖ ≤ 1

2(1− p(‖x0 − x∗‖))
. (2.25)

It also follows that u0, v0, and x1 are well defined by the last three substeps of
method (1.2), respectively. We can write by (2.6) that

F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′(x∗ + t(x0 − x∗))(x0 − x∗)dθ. (2.26)

Then, by (2.9) and (2.26), we have that

‖F ′(x∗)−1F (x0)‖ = ‖
∫ 1

0
F ′(x∗)−1F ′(x∗ + t(x0 − x∗))(x0 − x∗)dθ‖

≤
∫ 1

0
q1(θ‖x0 − x∗‖)dθ‖x0 − x∗‖.

(2.27)



102 I.K. ARGYROS, S. GEORGE, S.M. ERAPPA

Using the fourth substep of method (1.2) for n = 0, we can write

u0 − x∗ = (x0 − x∗ − F ′(x0)−1F (x0)) + 1
2
F ′(x0)

−1F (x0)

+(F ′(x0)− 3F ′(z0))
−1F (x0)

= (x0 − x∗ − F ′(x0)−1F (x0)) + 3
2
F ′(x0)

−1[(F ′(x0)− F ′(x∗))

+(F ′(x∗)− F ′(z0))](F ′(x0)− 3F ′(z0))
−1F (x0).

(2.28)

Then, by (2.3), (2.4) (for i=4), (2.19), (2.21), (2.25), (2.27), and (2.28), we have
in turn that

‖u0 − x∗‖ ≤ ‖x0 − x∗ − F ′(x0)−1F (x0)‖

+3
2
‖F ′(x0)−1F ′(x∗)‖[‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖

+‖F ′(x∗)−1(F ′(x∗)− F ′(z0))‖]‖(F ′(x0)− 3F ′(z0))
−1F ′(x∗)‖

×‖F ′(x∗)−1F (x0)‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖

+3
4

[q0(‖x0−x∗‖)+q0(‖z0−x∗‖)]
∫ 1
0 q1(θ‖x0−x

∗‖)dθ‖x0−x∗‖
(1−q0(‖x0−x∗‖))(1−p‖x0−x∗‖)

= g4(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ,
(2.29)

which shows (2.14) for n = 0 and u0 ∈ U(x∗, ρ). As in (2.27) for x0 = u0, using
(2.29), we get also that

‖F ′(x∗)−1F (u0)‖ ≤ ‖
∫ 1

0
q1(θ‖u0 − x∗‖)dθ‖u0 − x∗‖

≤
∫ 1

0
q1(θg4(‖x0 − x∗‖)‖x0 − x∗‖)dθg4(‖x0 − x∗‖)‖x0 − x∗‖.

(2.30)
Then, it follows from (2.3), (2.4) (for i=5), (2.19), (2.21), (2.25), (2.29), (2.30),
and the identity obtained from the fifth substep of method (1.2) for n = 0

v0 − x∗ = u0 − x∗ + 2(F ′(x0)− 3F ′(z0))
−1F (u0) (2.31)
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that

‖v0 − x∗‖ ≤ ‖u0 − x∗‖+ 2‖(F ′(x0)− 3F ′(z0))
−1F (x∗)‖‖F ′(x∗)−1F (u0)‖

≤ ‖u0 − x∗‖+
∫ 1
0 q1(θ‖u0−x

∗‖)dθ‖u0−x∗‖
1−p‖x0−x∗‖

≤ (1 +
∫ 1
0 q1(θ‖u0−x

∗‖)dθ
1−p‖x0−x∗‖ )‖u0 − x∗‖

≤ g5(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ,
(2.32)

which shows (2.15) for n = 0 and v0 ∈ U(x∗, ρ). From (2.27)(for x0 = u0) and
(2.32), we also have that

‖x1 − x∗‖ = ‖v0 − x∗ + 2(F ′(x0)− 3F ′(z0))
−1F (v0)‖

≤ ‖v0 − x∗‖+ 2‖(F ′(x0)− 3F ′(z0))
−1F ′(x∗)‖‖F ′(x∗)−1F (v0)‖

≤ ‖v0 − x∗‖+
∫ 1
0 q1(θ‖v0−x

∗‖)dθ‖v0−x∗‖
1−p‖x0−x∗‖

≤ (1 +
∫ 1
0 q1(θ‖v0−x

∗‖)dθ
1−p‖x0−x∗‖ )‖v0 − x∗‖

= g6(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ,
(2.33)

which shows (2.16) for n = 0 and x1 ∈ U(x∗, ρ). By simply replacing x0, r0, y0, z0,
u0, v0, x1 by xk, rk, yk, zk, uk, vk, xk+1 in the preceding estimates, we arrive at
(2.11)–(2.16). Using the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < ρ, (2.34)

where c = g6(‖x0−x∗‖) ∈ [0, 1), we deduce that lim
k→∞

xk = x∗ and xk+1 ∈ U(x∗, ρ).

Finally to show the uniqueness part, let y∗ ∈ D1 be such that F (y∗) = 0. Define

the linear operator T =
∫ 1

0
F ′(x∗ + θ(y∗ − x∗))dθ. Then, using (2.7) and (2.17),

we get that

‖F ′(x∗)−1(T − F ′(x∗))‖ ≤
∫ 1

0
q0(θ‖x∗ − y∗‖)dθ

≤
∫ 1

0
q0(θR)dθ < 1,

(2.35)

so, T−1 ∈ L(Y,X). Then, from the identity 0 = F (y∗)− F (x∗) = T (y∗ − x∗), we
conclude that x∗ = y∗. �

Remark 2.2. (a) The radius ρ1 was obtained by Argyros in [2–5] as the con-
vergence radius for Newton’s method under condition (2.6)–(2.8). Notice
that the convergence radius for Newton’s method given independently by
Rheinboldt [25] and Traub [28] is given by

ρ =
2

3L
< ρ1.
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As an example, let us consider the function f(x) = ex − 1. Then x∗ = 0.
Set Ω = U(0, 1). Then, we have that L0 = e − 1 < l = e, so ρ =
0.24252961 < ρ1 = 0.324947231.

Moreover, the new error bounds [2–5] are

‖xn+1 − x∗‖ ≤
q

1− q0‖xn − x∗‖
‖xn − x∗‖2,

whereas the old ones [25,28]

‖xn+1 − x∗‖ ≤
q

1− q‖xn − x∗‖
‖xn − x∗‖2.

Clearly, the new error bounds are more precise, if q0 < q. Also, the
radius of convergence of method (1.2) given by ρ is larger than ρ1 (see
(2.2)).

(b) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method(GMREM), the gen-
eralized conjugate method(GCM) for combined Newton/finite projection
methods and in connection to the mesh independence principle in order
to develop the cheapest and most efficient mesh refinement strategy [2–5].

(c) The results can be also be used to solve equations, where the operator F ′

satisfies the autonomous differential equation [2–5,18,23]:

F ′(x) = P (F (x)),

where P is a known continuous operator. Since F ′(x∗) = P (F (x∗)) =
P (0), we can apply the results without actually knowing the solution x∗.
Set as an example F (x) = ex − 1. Then, we can choose P (x) = x+ 1 and
x∗ = 0.

(d) It is worth noticing that method (1.2) is not changing if we use the new
instead of the old conditions [17]. Moreover, for the error bounds in
practice, we can use the computational order of convergence (COC)

ξ =
ln ‖xn+2−xn+1‖

‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . . ,

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln ‖xn+2−x∗‖
‖xn+1−x∗‖

ln ‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . . ,

instead of the error bounds obtained in Theorem 2.1.
(e) In view of (2.7) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + q0(‖x− x∗‖)

condition (2.9) can be dropped and q can be replaced by

q(t) = 1 + q0(t)
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or
q = 1 + q0(ρ0) or q(t) = 2,

since q0(ρ0) < 1.

3. Numerical examples

The numerical examples are presented in this section.

Example 3.1. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define a function
F on D by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T ,

where w = (x, y, z)T . Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that using condition (2.8), we get q0(t) = (e − 1)t, q(t) = e

1
e−1 t, and

q1(t) = e
1

e−1 t.
The parameters are ρ0 = 0.581976, ρ1 = 0.38269, ρ2 = 0.38269, ρ3 = 0.2850,

ρ4 = 0.186668, ρ5 = 0.17217, ρ6 = 0.161725, and ρp = 0.288031.

Example 3.2. Let X = Y = C[0, 1], be the space of continuous functions defined
on [0, 1] equipped with the max norm. Let D = U(0, 1). Define function F on D
by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0

xθϕ(θ)3dθ. (3.1)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ for each ξ ∈ D.

Then, we get that x∗ = 0, q0(t) = 7.5t, q(t) = 15t, q1(t) = 15t. The parameters
are ρ0 = 0.13333, ρ1 = 0.06666, ρ2 = 0.0666, ρ3 = 0.044, ρ4 = 0.0358, ρ5 =
0.0318636, ρ6 = 0.0292235, and ρp = 0.0552285.

Example 3.3. Let X = Y = C[0, 1], be the space of continuous functions defined
on [0, 1] equipped with the max norm. Let us define f on D = [−1

2
, 5
2
) by

f(x) =

{
x3 lnx2 + x5 − x4, x 6= 0,
0, x = 0.

(3.2)

Choose x∗ = 1. We also have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

f ′′(x) = 6x lnx2 + 20x3 + 12x2 + 10x,

and
f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Notice that f ′′′(x) is unbounded on D. Hence, the results in [11], cannot apply
to show the convergence of method (1.2). Then, we get that x∗ = 0, q0(t) = q(t) =
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147t, q1(t) = 1 + q0(ρ0). The parameters are ρ0 = 0.006802, ρ1 = 0.004535, ρ2 =
0.004535, ρ3 = 0.00340, ρ4 = 0.00173487, ρ5 = 0.000843696, ρ6 = 0.000353272,
and ρp = 0.00340136.
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22. M.S. Petkovic, B. Neta, L. Petkovic, J. Džunič, Multipoint Methods for Solving Nonlinear

Equations, Elsevier, 2013



LOCAL CONVERGENCE OF A NOVEL EIGHTH ORDER METHOD 107

23. F.A. Potra, V. Pták, Nondiscrete Induction and Iterative Processes, Research Notes in
Mathematics 103, Pitman, Boston, 1984.

24. A.N .Romero, J.A. Ezquerro, M.A. Hernandez, Approximacion de soluciones de algunas
equacuaciones integrals de Hammerstein mediante metodos iterativos tipo. Newton, in: XXI
Congresode Ecuaciones Diferenciales y Aplicaciones, Universidad de Castilla-La Mancha,
2009.

25. W.C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equa-
tions, in: Mathematical Models and Numerical Methods (A.N. Tikhonov et al. eds.) pp.
129–142, Banach Center Publ. 3, Warsaw, 1978.

26. J.R. Sharma, P.K. Guha, R. Sharma, An efficient fourth order weighted-Newton method for
systems of nonlinear equations, Numer. Algorithms 62 (2013), no. 2, 307–323.

27. J.R. Sharma, P.K. Guha, An efficient fifth order method for systems of nonlinear equations,
Comput. Math. Appl 67 (2014) 591–601.

28. J.F. Traub, Iterative Methods for the Solution of Equations, AMS Chelsea Publishing, 1982.

1 Department of Mathematical Sciences, Cameron University, Lawton, OK
73505, USA

E-mail address: iargyros@cameron.edu

2 Department of Mathematical and Computational Sciences, NIT Karnataka,
575 025, India

E-mail address: sgeorge@nitk.ac.in

3 Department of Mathematics, Manipal Institute of Technology, Manipal,
Karnataka, 576104, India

E-mail address: shobha.me@gmail.com


	1. Introduction
	2. Local convergence
	3. Numerical examples
	References

