Khayyam J. Math. 5 (2019), no. 2, 65-76
DOLI: 10.22034/kjm.2019.86133

Khayyam Journal of [Vlathematics

emis.de/journals/KJM
kjm-math.org

SLANT TOEPLITZ OPERATORS ON THE LEBESGUE SPACE
OF THE TORUS

GOPAL DATT! AND NEELIMA OHRI?*

Communicated by A.M. Peralta

ABSTRACT. This paper introduces the class of slant Toeplitz operators on the
Lebesgue space of the torus. A characterization of these operators as the
solutions of an operator equation is obtained. The paper describes various
algebraic properties of these operators. The compactness, commutativity and
essential commutativity of these operators are also discussed.

1. INTRODUCTION

The study of slant Toeplitz operators emerged with Ho [4], with the study of
some elementary properties such as norms, eigen spaces and spectrum together
with the discussion of some structural properties of the C*-algebra generated by
these operators. If ¢(0) = > 7 dne™ is an L function on the unit circle
T, an operator Sy on L*(T) is said to be a slant Toeplitz operator induced by
the symbol ¢ if (Sge™?, e™?) = ¢y,,_,, for all integers n and m. The matrix of
S, with respect to the basis {e,(0) = e™?}>2__ of L*(T) can be obtained by
removing all the odd rows of the corresponding multiplication operator M, on
L*(T) given by (Mye™ e™) = ¢, .

Slant Toeplitz operators are closely associated with multiplication operators
and composition operators. As a matter of fact, each slant Toeplitz operator
Sy can be expressed as S; My, where M, denotes the multiplication operator on
L*(T), while the adjoint of a slant Toeplitz operator is a weighted composition
operator. Slant Toeplitz operators are linked closely with wavelets, dynamical
systems and Ruelle operators. We refer to [4, 5] and the references therein for a

detailed study of these operators.
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A lot of progress has taken place in the study of Toeplitz operators on the
Hardy space of the bidisk. The semi-commutator of Toeplitz operators on the
bidisk is studied in [2], while commuting Hankel and Toeplitz operators on the
Hardy space of the bidisk are described in [6]. More recently, a necessary and
sufficient condition is obtained for two Toeplitz operators to be commuting on
Hardy space of the bidisk [1].

With this paper, we extend in scope the study of slant Toeplitz operators
to the usual Lebesgue space of the torus T?, where T? is the Cartesian prod-
uct of two copies T and is a subset of C? (the symbol C refers to the complex
plane). We denote the space of all complex valued measurable functions satisfying
Jp2 | f|?do < oo, where do is the normalized Haar measure on T?, by L*(T?, do).
If there is no confusion about the measure, we simply denote it by L?(T?). L*(T?)
is a Hilbert space with norm induced by the inner product

2m 27

1 . . . .
(f.9) = (5=)° F(e%,eP)g(e™, ) dby db,.
27 0/0/

The set {€(m, ms) (21, 22) = 27" 25" : My, my € Z} forms an orthonormal basis of

L?(T?). The space of essentially bounded measurable functions on T? is denoted
by L>=(T?).
We characterize slant Toeplitz operators on L*(T?) as the solutions X of the
operator equation M i, iy X = XM 2iy 2y, where 71, 15 are integers and M iy in and
1 ~2 1 2 1 ~2
M 2i, 2, denote the multiplication operators on L*(T?) induced by the symbols
1 2

222 and 2723 in L®(T?) respectively. We also study some structural and
algebraic properties of these operators.

Throughout the paper, we use the symbols Z and Z, to denote the set of all
integers and the set of all non-negative integers respectively. The multiple Fourier
series on the torus T? can be viewed as the Fourier transformation on L*(T?) (see
[2, 6] and references therein). Using multiple Fourier series, we have that

LQ(TQ) = {f|f<217 22) = Z fml’szinlzgnz : Z |fm1,m2’2 < OO}
(m1,mo)ELXZ (m1,mo)ELXZ

The space H?(T?) is the collection of all those elements f(21, z3) = D (mrma)€ZX
Jmpma 21 292 of L*(T?) for which f,,, m, = 0, if either of the subscripts is negative.
Thus, we obtain that for f € H?*(T?), f(z1,22) = D (muma)eZy xZy Jmima?l 25
and || f[|* = 32, mayez, xz. [fmims|? < 00. The symbol B(L?*(T?)) denotes the
set of all bounded linear operators on L?(T?), while Ran(T) denotes the range
of an operator T. Two operators A and B are said to commute essentially if
AB — BA is a compact operator.

2. SOME BASIC PROPERTIES AND CHARACTERIZATION OF SLANT TOEPLITZ
OPERATORS

For ¢ € L>(T), the slant Toeplitz operator [4] Ss on the Hilbert space L?*(T)
is defined as S, = WMy, where I is an operator on L*(T) defined as Wes, = e,
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and Weg, 11 = 0 for each integer n. The operator W eliminates the odd rows from

the matrix of the multiplication operator M,. In fact, the operator W coincides

with S, the slant Toeplitz operator on L*(T) induced by the symbol ¢(z) = 1.
Following a similar approach, we define a linear operator £ on L*(T?) as

B2z,

m3 m2
mima _ 2,? z5°  if both m; and my are even integers
0 otherwise.

It is easy to see that the operator E is a bounded operator on L*(T?) with
|E|| = 1. The structure of E provides us the following, which can be obtained
with simple computations.

Proposition 2.1. For the operator E on L*(T?) as defined above, we have the
following.
(1) EE* =1 i.e. E is a co-isometry.
(2) E*E = P,., where P, is the projection of L*(T?) onto the closed subspace
generated by {22™ 22™2 - my and my are integers}.
(3) EM,,.,E* = 0.
(4) For f,g € L*(T?) such that fg € L*(T?), E(fg) = (Ef)(Eg) + E[((I —
Pee){)Ff()f—Pee)g)]- In particular, E(f(2%,23)9) = f(Eg) and E(fg(2, 23))
=g(Ef).

Proposition 2.2. Ran(P,) is a reducing subspace of E, where Py denotes the
orthogonal projection of L*(T?) onto H?(T?).

Proof. Tt is easy to see that PyF(2]" 25"?) = EPy(2{"25"?) =

m my
{212 2> if both m; and my are non-negative even integers

0 otherwise.
Hence, P,E = EP,. This provides that Ran(FP,) is a reducing subspace of E. [J

Next, we compute the adjoint of F and obtain the following.

Proposition 2.3. The adjoint of E is an operator on L*(T?) given by E*2{" 25"* =
zfmlzgm for each (my,my) € Z X Z. In fact, E* is a composition operator

Cy : L*(T?) — L*(T?), where H : T*> — T? is given by H(zy,25) = (22, 23).
Proof. We have for (my,ms) € Z X Z,
(B (M 25), 211 2y") = (™2™, B(21' %))

{1 if iy = 2my and iy = 2my

0 otherwise

= <Z%m1 Z§m27 Zil Z;2>,
for each (iy,i5) € Z x Z. Hence, E*2[" 25" = 22™ 23 for each pair (mq, my) €
Z x 7.
et finyms (21, 22) = 21252 € . Then, using the definition of a composi-
Let fony.ms M2 e LA(T?). Th ing the definition of i
tion operator, we get that Cy (27" 25"%) = Cu(fmims(21,22)) = (fm1,me0H)(21, 22) =

Frmy (23,23) = 23M23M2 — (2™ 202), for each (my,mg) € Z x Z. Since the



68 G. DATT, N. OHRI

operators E and C'y agree on all basis elements, we conclude that £ = C'y. This
completes the proof. O

Motivated by the approach of Ho [4], we now proceed to define slant Toeplitz
operators on the space L?(T?).

Definition 2.4. Let ¢ € L>°(T?). The slant Toeplitz operator Ay induced by the
symbol ¢ is an operator on L*(T?) defined as A,f = EMyf for each f € L*(T?),
where M, denotes the multiplication operator on L?(T?) induced by ¢.

It is trivial to see that the slant Toeplitz operator A, on L*(T?) induced by
the symbol ¢(z1, z2) = 1 is nothing but the operator E defined above.

The operator Ay is a bounded linear operator on L*(T?) with || 44|l < ||¢]|co-
Let ¢(21,22) = D (0, ma)ezxz Pmime21 25 2, then for each (n1,ns) € Z x Z, we
have that

Ay(2232) = E( Z - Zin1+nlz;n2+n2)

(m1,m2)ELXZ

= Z Py —na,ma—na B (21" 237)

(m1,m2)ELXZ
_ E my ma
- ¢2m1—n172m2—n221 R9 "
(m1,m2)ELXZL
We also obtain

<A;(Z?1Zg2)v zilz;2> = <Z?1112327 Z ¢2m1—i172m2—izz{nlz£n2>

(m1,m2)EZXZ
= C_b2n1711,2n271'2
= { Z 52n1—m1,2n2—m221n125n27 2 27),
(m1,mo)€EZLXZ
for every (i1,42) € Z x Z, so that the adjoint A} of Ay is given by

* (. ni n2\ __ = mi ,m2
A¢(Z1 zy%) = E ¢2n17m1,2n27m22’/1 Ro "
(m1,m2)ELXZ

Proposition 2.5. Let ¢ € L=(T?). Then, As =0 if and only if ¢ = 0.
Proof. Nothing needs to be proved in “if” part. For “only if” part, let A, = 0,
where ¢(21, 22) = Z(ml,mg)EZXZ Gmyma?1 25 2. Then, for each (i1,i3) € Z X Z,
Ay(21128) = 0. The structure of A4 provides that
Z ¢2m1—i1,2m2—i2 Z{m Z;m = 0.
(m1,m2)ELXZL

Consequently, we have ¢om, —iy 2my—i, = 0 for each (i1, is), (my, ma) € Zx7Z. Then,
substituting i; = m; and iy = my, we obtain that ¢,,, m, = 0 for each (my, my) €
7 x 7. Thus we conclude that ¢ = 0. This completes the proof. ]

It is now straightforward to state our next result.
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Theorem 2.6. ¢ — Ay is a linear one-one correspondence from L>*(T?) to
B(L*(T?)).

It is known that slant Toeplitz operators on L?*(T) are characterized as the
solutions X of the operator equation M, X = X M2 (see [1]). We aim to charac-
terize slant Toeplitz operators on L?(T?) in a similar fashion. For this purpose,
we shall need the following prerequisites.

Proposition 2.7. For ¢ € L*>°(T?), we have the following for (iy,is) € Z X Z.
(1) Mzilz;QE = Eszilzgig,

(2) MZfiIZ;i2 M¢ - M(szfZlZ;'LQ .

Proof. (1) follows since M i, i, E (2" 25"*) = EM 21y i (2" 25") =
1 72 1 2

Thtin T24ir .
217 2y° if both m; and my are even integers
0 otherwise.

To prove (2), consider ¢ € L>(T?) given as ¢(z1, 22) = Z(ml,mz)eZXZ Ormyms
21" zy%. Then, for each (ny,ns) € Z x Z, we find that szilzgiqug(Z{LlZgz) =
(i ma)ezxz Pmams Ztmt2i ymatnat2i; M¢szﬁz§¢2 (21" 25?). This completes
the proof. |

We now extend the result of Ho [4] to the slant Toeplitz operators on L?(T?)
in the following theorem.

Theorem 2.8. A € B(L*(T?)) is a slant Toeplitz operator if and only if
M A= AM 2 2, fOT’ all (il,’ig) €7 X 7.
21 %2 21 R
Proof. Let A = Ay be a slant Toeplitz operator on L*(T?). Then, M i, i, Ay =
1 ~2
MzilziQEM¢ = EMZ2i1Z2i2 M¢ = EM‘sz%lz%Q = A¢M22ilz2i2. Hence, A satisfies
1 ~2 1 2 1 2 1 2
the operator equation MzilzilA = AMz2i122i2.
1 <2 1 2
Conversely, let A be a bounded operator on L?(T?) satisfying My A =
1 ~2
AMZfilzgig. For any element f(z1,22) = >, myyezxz frime 217257 € L3(T?),
we have

Af(,2) = A0 > fomn ™ 5™)

(m1,mo)ELXZ

= Z fmhmzA(Z%leng)

(m1,m2)EZXZ

= Z fm1,m2Aszml zng (1>

(m1,m2)EZLXZ
= > frme Mo A(L) = f(z1,2) A1),
(m1,m2)ELXZ

Working along similar lines, we obtain that A(zif(2},23)) = f(21,22)A(21),
Azof(22,22)) = f(21,22)A(20) and A(z120f(21,23)) = f(21,20)A(2122). We
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claim that each of the functions ¢g9 = A(1),¢10 = A(21),001 = A(z2) and
¢11 = A(z122) belongs to L>(T?).
Observe that for each 7,5 € {0,1},
165 f | = 1 A(2125f (21, 22 )| < ANl =3 (21, 22)1l = [ANIIF-

This implies that each ¢; ; induces a bounded multiplication operator on L*(T?).
Thus each ¢; ; € L*°(T?) for 4,5 € {0,1}.

Lastly, using these ¢;;’s, we construct a ¢ in L>(T?) such that A = A,. Let
P21, 22) = Poo(27, 23) + Z1¢n0(27, 23) + Zadon (21, 23) + Z1Z2011(27, 23). Then, ¢ €
L>=(T?). Also, for any f in L*(T?),

fz1,29) = foo(21, 23) + 21 fr0(27, 23) + zafor (21, 23) + 2120 fua (2, 23).
Clearly, foo, fi0, for and fi; € L*(T?). Consider now
A f(21,22) = EMy f(21, 22)
= E(¢oo(27, 23) foo (21, 23) + ¢10(21, 23) fro(21, 23) + don (21,
22) for(23, 23) + d11(23, 23) f11(21, 23) + terms containing
2'2) in which either i or j is odd)
= doo(21, 22) foo(21, 22) + d10(21, 22) fr0(21, 22) + @o1(21, 22)
Jor(21, 22) + d11(21, 22) f11(21, 22)
= foo(21, 22) A(1) + fro(21, 22) A(21) + for(21, 22) A(22) + fin
(21, 22) A(2122)
= A(foo(21, 23) + z1fr0(21, 23) + 22 for (21, 23) + 212011 (27,
%))
= Af(z1,22).
Thus A = A, and the proof is complete. O
(i.e. MZ?Z;'Q
is a unitary operator). Hence, slant Toeplitz operators on L?*(T?) can also be
characterized in the following manner.

It is straightforward to observe that My i = M5, , = M _,-11
1 %2 2z

P)
21 %2 22

Corollary 2.9. A bounded operator A on L*(T?) is a slant Toeplitz operator if
and only if A= M_i,_i, AM 2, i, for all (iy,i2) € Z X Z.
1 ~2 1 2

Theorem 2.10. The set of all slant Toeplitz operators on L*(T?) is weakly closed

and hence strongly closed.

Proof. Let A, — A weakly, where each A, is a slant Toeplitz operator on L?(T?).
Then, for f,g € L*(T?), (A.f,g) — (Af, g). This provides that

<Anz%i1 Zgiz 1, zil zé2g> — <Az%i1 Zgiz f, zil Z?g) = <ME?E? Asz”zgiQ f,9).

Also, since each A, is a slant Toeplitz operator, therefore making use of Corollary
2.9, Mzilzig AnMZ%lzm‘Q = An Thus
1 =2 1 2

<Anzfilzgi2fa 2?252@ = <Mgilg;2Aanfi1Z§i2fa 9) = (Anf,9) — (Af, 9).
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Therefore by uniqueness of limits, we obtain that (Af, g) = (M_i,_is A M 2, 2, f, g)
1“2 1 2
for all f,g € L*(T?). Thus A = M_i, iy AM »i; _2i,. Therefore, A is a slant Toeplitz
21?2 21 R
operator on L?(T?). This completes the proof. O

Theorem 2.11. For ¢ € L>(T?), A} is a slant Toeplitz operator on L*(T?) if
and only if ¢ = 0.

Proof. If ¢ = 0, nothing needs to be proved. Conversely, let A% be a slant
Toeplitz operator, where ¢(z1, z5) = Z(ml,mz)GZXZ Gmymo21 252 Then, using the
characterization of slant Toeplitz operators, we have M., ., Ay = AZM.2 2. Hence,
(MzmAz)z?lng,z?z;’z) = (A5M 232" 25" L2 22) for each (ni,ns), (i1,i2) € Z
Z. The structure of A} provides that

¢2n1 —i14+1,2np—ig+1 — ¢2n1 —i144,2n9—io+4

for each (n1,m2), (i1,i2) € Z X Z. Once we put ny = 0 = ny, we get that
541+1,42+1 = 5,11+47,i2+4 for each (i1,i3) € Z x Z. This yields that ¢;,;, =
Gy +3m.is+3m for each m > 0 and for each (i1,42) € Z x Z. Since ¢ € L>(T?) C
L2(T2)7 therefore ZmeZ |¢i1+3m,i2+3m|2 < oo and hence ngréo |Piy43m,inr3m| = 0.
This helps us to conclude that ¢ = 0. 0J

In order to discuss the compactness of slant Toeplitz operators on L?(T?), we
first describe compact multiplication operators on L?(T?).

It is known [3] that the only compact multiplication operator on L?(T) is the
zero operator. We obtain the same for multiplication operators on L?(T?) in the
following result.

Lemma 2.12. The multiplication operator My on L?(T?), induced by ¢ € L>°(T?),
1s compact if and only if the inducing symbol ¢ = 0.

Proof. Let ¢(21, 22) = 311 mayezxz Pmima?1 25" € L>=(T?) and My be compact.
Since compact operators map weakly convergent sequences to strongly convergent
ones, we obtain for each (ji,j2) € Z x Z and ng € Z, |[{ Mgz 252, 27 71 252172)| <
| Mp2i" 252 || — 0 as nqy — oo.

ni  na Ni+ji

Also, structure of My provides that [(My2" 252, 2 1 202192) | = [ (mama)ezxz

Oy mp 2T N2 ST 2T | — 6 Therefore, we obtain that ¢, j, = 0
for each (41, j2) € Z x Z. Thus ¢ = 0.
Converse is straightforward. O

Now, we investigate the existence of compact slant Toeplitz operators on L*(T?)
and obtain the following.

Theorem 2.13. The only compact slant Toeplitz operator on L*(T?) is the zero
operator.

Proof. Let Ay, where (21, 22) = D7, mayezxz Pmima?1 2577 € L>(T?), be com-
pact. Then, each operator AgM.r.aE”, for p and ¢ equal to 0 and 1, is also
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compact. Also, for (iy,i2) € Z x Z and p,q € {0,1} we obtain that
ApM o g E* (21 2) = Ay P23 7)

D DI S

(m1,m2)ELXZ
= Z ¢2M1*p,2m2*qzinl+i1 Z;n2+i2
(m1,m2)ELXZ
= pr q(zilz§2)7
where &,4(21,22) = D (01 mo)ezxz P2mi—p2ma—a?1 23 € L>°(T?). Hence, the op-
erators Me, ., p,q € {0,1} are compact. Making use of Lemma 2.12, we get that

for any (my,mg) € Z x Z and for each p,q € {0,1}, dom;—poms—q = 0. This is
turn yields that ¢ = 0. Hence, Ay = 0 and the proof is complete. 0

3. ALGEBRAIC PROPERTIES

This section aims at the study of some algebraic properties of slant Toeplitz
operators on L%*(T?). We discuss sums and products of slant Toeplitz operators
induced by different symbols. Commutativity and essential commutativity of
these operators is also discussed.

Proposition 3.1. The sum of two slant Toeplitz operators on L*(T?) is a slant
Toeplitz operator.

Proof. Let Ay and Ay, be two slant Toeplitz operators induced by symbols ¢ and
¥ in L>(T?) respectively. Then, M iy in(Ag + Ay) = My i Ay + M iy in Ay =
1 =2 1 =2 1 =2
A¢Mz2i122i2 + AwMZ2i122i2 = (A¢ + Aw)MzzilzziQ. Hence, the sum A¢ + Aw is a
1 2 1 2 1 2
slant Toeplitz operator.
In fact, Ay +Ay = EMy+EM, = EMy,, = Ayyy, the slant Toeplitz operator
on L?*(T?) induced by the symbol ¢ + 1. O
In Proposition 2.7, we proved that MzilzilE = EMZ%IZQZ'Q. We extend this
result and find that for any general ¢ € L>(T?), MyE = EMy2 .2).

Proposition 3.2. Let ¢ € L®(T?). Then, MyE = EMy(.2 .2) (= Ay:2..3))-

Proof. Let ¢(z1,22) = 301 noyezxz Prima 21 25> € L(T?). For any pair (m1,m2) €
Z x 7, we obtain

2m1 2mao\ __ ni+miy not+mo 2mq _2mo
MyE(z"™2,") = E Py e %) —EM¢(zf,z§)(Z1 z"?).

(n1,n2)ELXZ
Also, for (4,7) € {(1,0),(0,1),(1,1)},
MyE(2m+123m ) = 0 = EMy ) (232374,
This completes the proof. -

Theorem 3.3. Let ¢,¢) € L>°(T?). Then, MyAy is a slant Toeplitz operator and
My Ay = Ag(2 230
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Proof. We have M i, i, (MyAy) = MgM s _in Ay = (MyAy)M 2i, 2i,. Hence, MyAy
1 <2 1 =2 1 2
is a slant Toeplitz operator on L?(T?).
Also, utilizing Proposition 3.2, we obtain that MyA, = MyEM,, = EMg .2 .2) My
= FEM, =A 0
o(27,25)% p(21,23)¢

Theorem 3.4. For ¢, € L*(T?), MyAy, = AyM, if and only if ¢(2%,22)¢
= ¢. If 9 is invertible, then MyAy, = AyMy if and only if ¢ is constant.

Proof. By Theorem 3.3, we have MyAy = Ay(.2 .2)y. Also, AyMy = EMyM, =
EMgy = Agy.

Now, “only if” part is obvious, while “if” part follows using the injectivity of
the mapping ¢ — A,.

Let ¢(21,22) = X (ny mayezxz Pmime?1 ' 22" € L>=(T?) for (21, 29) € T?. Let ¢
be invertible, then MyA, = A,My, equivalently ¢(27,23) = ¢, or (¢(z27,23) —
B(21, 2), 211 2%2) = 0 for each (iy,49) € Z x Z. But (¢(22, 22) — ¢(21, 22), 21 22) =

qﬁzl 2 — ¢4y, if both 41,75 are even

Qﬁ“@ otherwise.
Therefore, we obtain that ¢;, ;, = 0 for each (0,0) # (i1,4i2) € ZxZi.e. P(21,22) =
¢oo( a constant).
Hence, for an invertible v, MyA, = AyMy if and only if ¢ is a constant
function. 0J

It is evident from Proposition 3.2 that the operators £ and M, do not commute
in general. However, as a consequence of the above theorem, we find that for a
constant ¢, K and M, commute.

Corollary 3.5. For ¢ € L>(T?), EM, = M,FE if and only if ¢ is constant.

We now focus our attention towards the product A,A, of two slant Toeplitz
operators and obtain condition(s) for this product to be a slant Toeplitz operator.
For, we first observe the following.

Proposition 3.6. For ¢ € L>(T?), EA, is a slant Toeplitz operator if and only
if  =0.
Proof. Let, if possible, EA, = A¢ for some £(21,22) = D (1 ma)ezxz Smims
M2 e [°(T2). Let ¢(z1, 25) = D (mrma)ezxz Pmima 21 29 € L>(T?). Then,
for each (ny,n2) € Z X Z, we have EA(27" 25%) = A¢(27"25?). This provides that
¢4m17n1,4m27n2 = £2m17n1,2m27n2 for each myi, Mg, N1, Ny € Z. For mi; = my = 07
we get that ¢n, n, = Enyny for each (ny,ny) € Z x Z.

Hence, for each (ny,n2) € Z x Z, we obtain that ¢a_pn,2-n, = Ps-nya-n, =

O8—ny 8—ny = ---. Since rnlgléo|¢2m_”l’2m_”2| = 0, SO ¢9_n,2-n, = 0 for each
(n1,m9) € Z x Z. This provides that ¢ = 0.
Converse is trivial. O

Theorem 3.7. The operator AyAy is a slant Toeplitz operator if and only if
¢(Z%7 Z§>¢ = 0.
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Proof. By the definition of slant Toeplitz operator and using Proposition 3.2,
we obtain that AgAy, = E(MyE)My = E(EMy2.2)) My = E(EMy2 .2)) =
EAg.2.2)4- The result now follows using Proposition 3.6. 0J
Next, we discuss the compactness of the product A,A, of two slant Toeplitz

operators A, and Ay,. We shall require the following.
Lemma 3.8. Let ¢ € L>(T?). Then, we have the following.

(1) AyA, =0 if and only if $ = 0.

(2) A1Ay is compact if and only if ¢ = 0.
Proof. Let ¢(21,22) = 301 mayeznz Prrma 21 29 € L2(T?). For (1), let Ay Ay =
0. But, A1Ay = EM,EMy = E* M. Hence, we have

ni . no i1 02\ 2 ni . no 11 12
(A1Apzy"2y°, 21 25 ) = (B° Myt 23%, 21 25)

o ni _ne  _2i1 2iz
= (Ap21" 2%, 21" 23"%)
o j : my ma 211 2i9
—< ¢2m1—n1,2m2—n2Z1 22 ’Zl 22 >

(m1,m2)ELXZ
- ¢4i1—n174i2—n2~

Thus we obtain that ¢4, _n, 4i,—n, = 0 for each (i1, is), (n1,n2) € Z x Z. Substi-
tuting n; = 3i; and ny = 3iy, we obtain that ¢;, ;, = 0 for each (iy,i3) € Z x Z.
Thus ¢ = 0.

Converse is obvious.

For (2), let A; A, be compact. Then, we get that for each p, g € {0, 1,2, 3}, the
operator EQ(A1A¢MZ§>Z§)* is compact. Now for the case p = ¢ = 0, we have

B2 (Ay A Mogg) " = BAMGAA™ o4 = 23 m) ™ 4™

= 2" 5 B2 (¢(21, 2))
= E2($(21,ZQ))(ZT12?2)»
for each (m1,ma) € Z x Z. Hence, E*(A1Ay)* = Mpa g
ness of E?(A;Ay)* provides that My, g,

E%(¢(z1, 22)) = 0. This provides that
0= (E*(d(21,22)), 21 25)
= < Z aml,mzzl_mle_mQa Z%il Z§i2> = 5—4@'1,—41'27
(m1,m2)EZLXZ

for each (iy,12) € Z x Z.
Applying similar computations, we get that Ez(AlA(ﬁszzg)* =M B2 (27295) and

21200 NOw, the compact-

1,2)) 18 @ compact operator and hence

the compactness of these operators helps to provide that ¢_,; \—p—diy—q = 0 for

(0,0) # (p,q) € {0,1,2,3} x {0,1,2,3}.
Thus ¢, .m, = 0 for each (my, my) € Z x Z and hence ¢ = 0.
Nothing needs to be proved in the converse part. Il

Proposition 3.9. The product AyAy of two slant Toeplitz operators is 0 if and
only if ¢(2, 23) = 0.
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Proof. Since AgAy = EAy.2 .2y, Lemma 3.8 together with the fact that E' = A,
helps to provide that A¢A¢ = 0 if and only if ¢(22, 22)y = 0. O

We are now in a position to state the following result. It follows simply by
using together Theorem 3.7, Lemma 3.8 and Proposition 3.9.

Theorem 3.10. Let ¢,v € L>=(T?). Then, the following are equivalent:

(1) AyAy is a compact operator.
(2) AgAy is a slant Toeplitz operator.
(3) AgAy = 0.

Remark 3.11. The following are now easy to obtain:

(1) A non-zero slant Toeplitz operator on L?*(T?) can not be idempotent.
(2) The product of two slant Toeplitz operators on L?*(T?) can not be a non-
zero slant Toeplitz operator on L?(T?).

Lastly, we obtain that the notions of commutativity and essential commuta-
tivity coincide for slant Toeplitz operators on L*(T?).

Theorem 3.12. The following are equivalent:

1) Ay and A, commute.

( ) ] 0

2 A and Ay essentially commute.
( P Yy

(3) ¢(Z1722)¢ ¢(21732)¢ 0.

Proof. We shall first prove that (1 ) and (3) are equivalent. We obtain that
ApAy = AyAy it and only if EAy.2.2)y = EAye2.2)6- This is equivalent to

(Aqb zl,zQ)w w(zl,ZQ) ) =0.

Utilizing Lemma 3.8, we obtain that AgA, = A, A, if and only if ¢(2%,22)v
—¢<Z%7 Z%)¢ =0.

The equivalence of (2) and (3) follows using Lemma 3.8 since A,Ay, — A, Ay =

(A¢) 21?Z2)w "/)(Zl Z2 ) and F = Al |
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