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SLANT TOEPLITZ OPERATORS ON THE LEBESGUE SPACE
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Abstract. This paper introduces the class of slant Toeplitz operators on the
Lebesgue space of the torus. A characterization of these operators as the
solutions of an operator equation is obtained. The paper describes various
algebraic properties of these operators. The compactness, commutativity and
essential commutativity of these operators are also discussed.

1. Introduction

The study of slant Toeplitz operators emerged with Ho [4], with the study of
some elementary properties such as norms, eigen spaces and spectrum together
with the discussion of some structural properties of the C*-algebra generated by
these operators. If φ(θ) =

∑∞
n=−∞ φne

inθ is an L∞ function on the unit circle
T, an operator Sφ on L2(T) is said to be a slant Toeplitz operator induced by
the symbol φ if 〈Sφeinθ, eimθ〉 = φ2m−n for all integers n and m. The matrix of
Sφ with respect to the basis {en(θ) = einθ}∞n=−∞ of L2(T) can be obtained by
removing all the odd rows of the corresponding multiplication operator Mφ on
L2(T) given by 〈Mφe

inθ, eimθ〉 = φm−n.
Slant Toeplitz operators are closely associated with multiplication operators

and composition operators. As a matter of fact, each slant Toeplitz operator
Sφ can be expressed as S1Mφ, where Mφ denotes the multiplication operator on
L2(T), while the adjoint of a slant Toeplitz operator is a weighted composition
operator. Slant Toeplitz operators are linked closely with wavelets, dynamical
systems and Ruelle operators. We refer to [4, 5] and the references therein for a
detailed study of these operators.
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A lot of progress has taken place in the study of Toeplitz operators on the
Hardy space of the bidisk. The semi-commutator of Toeplitz operators on the
bidisk is studied in [2], while commuting Hankel and Toeplitz operators on the
Hardy space of the bidisk are described in [6]. More recently, a necessary and
sufficient condition is obtained for two Toeplitz operators to be commuting on
Hardy space of the bidisk [1].

With this paper, we extend in scope the study of slant Toeplitz operators
to the usual Lebesgue space of the torus T2, where T2 is the Cartesian prod-
uct of two copies T and is a subset of C2 (the symbol C refers to the complex
plane). We denote the space of all complex valued measurable functions satisfying∫
T2 |f |2dσ <∞, where dσ is the normalized Haar measure on T2, by L2(T2, dσ).

If there is no confusion about the measure, we simply denote it by L2(T2). L2(T2)
is a Hilbert space with norm induced by the inner product

〈f, g〉 = (
1

2π
)2

2π∫
0

2π∫
0

f(eiθ1 , eiθ2)g(eiθ1 , eiθ2)dθ1dθ2.

The set {e(m1,m2)(z1, z2) = zm1
1 zm2

2 : m1,m2 ∈ Z} forms an orthonormal basis of
L2(T2). The space of essentially bounded measurable functions on T2 is denoted
by L∞(T2).

We characterize slant Toeplitz operators on L2(T2) as the solutions X of the
operator equation M

z
i1
1 z

i2
2
X = XM

z
2i1
1 z

2i2
2

, where i1, i2 are integers and M
z
i1
1 z

i2
2

and

M
z
2i1
1 z

2i2
2

denote the multiplication operators on L2(T2) induced by the symbols

zi11 z
i2
2 and z2i11 z2i22 in L∞(T2) respectively. We also study some structural and

algebraic properties of these operators.
Throughout the paper, we use the symbols Z and Z+ to denote the set of all

integers and the set of all non-negative integers respectively. The multiple Fourier
series on the torus T2 can be viewed as the Fourier transformation on L1(T2) (see
[2, 6] and references therein). Using multiple Fourier series, we have that

L2(T2) = {f |f(z1, z2) =
∑

(m1,m2)∈Z×Z

fm1,m2z
m1
1 zm2

2 :
∑

(m1,m2)∈Z×Z

|fm1,m2|2 <∞}.

The spaceH2(T2) is the collection of all those elements f(z1, z2) =
∑

(m1,m2)∈Z×Z
fm1,m2z

m1
1 zm2

2 of L2(T2) for which fm1,m2 = 0, if either of the subscripts is negative.
Thus, we obtain that for f ∈ H2(T2), f(z1, z2) =

∑
(m1,m2)∈Z+×Z+

fm1,m2z
m1
1 zm2

2

and ‖f‖2 =
∑

(m1,m2)∈Z+×Z+
|fm1,m2|2 < ∞. The symbol B(L2(T2)) denotes the

set of all bounded linear operators on L2(T2), while Ran(T ) denotes the range
of an operator T. Two operators A and B are said to commute essentially if
AB −BA is a compact operator.

2. Some basic properties and characterization of slant Toeplitz
operators

For φ ∈ L∞(T), the slant Toeplitz operator [4] Sφ on the Hilbert space L2(T)
is defined as Sφ = WMφ, where W is an operator on L2(T) defined as We2n = en
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and We2n+1 = 0 for each integer n. The operator W eliminates the odd rows from
the matrix of the multiplication operator Mφ. In fact, the operator W coincides
with S1, the slant Toeplitz operator on L2(T) induced by the symbol φ(z) = 1.

Following a similar approach, we define a linear operator E on L2(T2) as

Ezm1
1 zm2

2 =

{
z

m1
2

1 z
m2
2

2 if both m1 and m2 are even integers

0 otherwise.

It is easy to see that the operator E is a bounded operator on L2(T2) with
‖E‖ = 1. The structure of E provides us the following, which can be obtained
with simple computations.

Proposition 2.1. For the operator E on L2(T2) as defined above, we have the
following.

(1) EE∗ = I i.e. E is a co-isometry.
(2) E∗E = Pee, where Pee is the projection of L2(T2) onto the closed subspace

generated by {z2m1
1 z2m2

2 : m1 and m2 are integers}.
(3) EMz1z2E

∗ = 0.
(4) For f, g ∈ L2(T2) such that fg ∈ L2(T2), E(fg) = (Ef)(Eg) + E[((I −

Pee)f)((I−Pee)g)]. In particular, E(f(z21 , z
2
2)g) = f(Eg) and E(fg(z21 , z

2
2))

= g(Ef).

Proposition 2.2. Ran(P2) is a reducing subspace of E, where P2 denotes the
orthogonal projection of L2(T2) onto H2(T2).

Proof. It is easy to see that P2E(zm1
1 zm2

2 ) = EP2(z
m1
1 zm2

2 ) ={
z

m1
2

1 z
m2
2

2 if both m1 and m2 are non-negative even integers

0 otherwise.

Hence, P2E = EP2. This provides that Ran(P2) is a reducing subspace of E. �

Next, we compute the adjoint of E and obtain the following.

Proposition 2.3. The adjoint of E is an operator on L2(T2) given by E∗zm1
1 zm2

2 =
z2m1
1 z2m2

2 for each (m1,m2) ∈ Z × Z. In fact, E∗ is a composition operator
CH : L2(T2)→ L2(T2), where H : T2 → T2 is given by H(z1, z2) = (z21 , z

2
2).

Proof. We have for (m1,m2) ∈ Z× Z,

〈E∗(zm1
1 zm2

2 ), zi11 z
i2
2 〉 = 〈zm1

1 zm2
2 , E(zi11 z

i2
2 )〉

=

{
1 if i1 = 2m1 and i2 = 2m2

0 otherwise

= 〈z2m1
1 z2m2

2 , zi11 z
i2
2 〉,

for each (i1, i2) ∈ Z × Z. Hence, E∗zm1
1 zm2

2 = z2m1
1 z2m2

2 for each pair (m1,m2) ∈
Z× Z.

Let fm1,m2(z1, z2) = zm1
1 zm2

2 ∈ L2(T2). Then, using the definition of a composi-
tion operator, we get that CH(z

m1
1 zm2

2 ) = CH(fm1,m2(z1, z2)) = (fm1,m2oH)(z1, z2) =

fm1,m2 (z21 , z
2
2) = z2m1

1 z2m2
2 = E∗(zm1

1 zm2
2 ), for each (m1,m2) ∈ Z × Z. Since the



68 G. DATT, N. OHRI

operators E and CH agree on all basis elements, we conclude that E = CH . This
completes the proof. �

Motivated by the approach of Ho [4], we now proceed to define slant Toeplitz
operators on the space L2(T2).

Definition 2.4. Let φ ∈ L∞(T2). The slant Toeplitz operator Aφ induced by the
symbol φ is an operator on L2(T2) defined as Aφf = EMφf for each f ∈ L2(T2),
where Mφ denotes the multiplication operator on L2(T2) induced by φ.

It is trivial to see that the slant Toeplitz operator Aφ on L2(T2) induced by
the symbol φ(z1, z2) = 1 is nothing but the operator E defined above.

The operator Aφ is a bounded linear operator on L2(T2) with ‖Aφ‖ ≤ ‖φ‖∞.
Let φ(z1, z2) =

∑
(m1,m2)∈Z×Z φm1,m2z

m1
1 zm2

2 , then for each (n1, n2) ∈ Z × Z, we
have that

Aφ(zn1
1 z

n2
2 ) = E

( ∑
(m1,m2)∈Z×Z

φm1,m2z
m1+n1
1 zm2+n2

2

)
=

∑
(m1,m2)∈Z×Z

φm1−n1,m2−n2E(zm1
1 zm2

2 )

=
∑

(m1,m2)∈Z×Z

φ2m1−n1,2m2−n2z
m1
1 zm2

2 .

We also obtain

〈A∗φ(zn1
1 z

n2
2 ), zi11 z

i2
2 〉 = 〈zn1

1 z
n2
2 ,

∑
(m1,m2)∈Z×Z

φ2m1−i1,2m2−i2z
m1
1 zm2

2 〉

= φ2n1−i1,2n2−i2

= 〈
∑

(m1,m2)∈Z×Z

φ2n1−m1,2n2−m2
zm1
1 zm2

2 , zi11 z
i2
2 〉,

for every (i1, i2) ∈ Z× Z, so that the adjoint A∗φ of Aφ is given by

A∗φ(zn1
1 z

n2
2 ) =

∑
(m1,m2)∈Z×Z

φ2n1−m1,2n2−m2
zm1
1 zm2

2 .

Proposition 2.5. Let φ ∈ L∞(T2). Then, Aφ = 0 if and only if φ = 0.

Proof. Nothing needs to be proved in “if” part. For “only if” part, let Aφ = 0,
where φ(z1, z2) =

∑
(m1,m2)∈Z×Z φm1,m2z

m1
1 zm2

2 . Then, for each (i1, i2) ∈ Z × Z,

Aφ(zi11 z
i2
2 ) = 0. The structure of Aφ provides that∑

(m1,m2)∈Z×Z

φ2m1−i1,2m2−i2z
m1
1 zm2

2 = 0.

Consequently, we have φ2m1−i1,2m2−i2 = 0 for each (i1, i2), (m1,m2) ∈ Z×Z. Then,
substituting i1 = m1 and i2 = m2, we obtain that φm1,m2 = 0 for each (m1,m2) ∈
Z× Z. Thus we conclude that φ = 0. This completes the proof. �

It is now straightforward to state our next result.



SLANT TOEPLITZ OPERATORS ON THE TORUS 69

Theorem 2.6. φ 7→ Aφ is a linear one-one correspondence from L∞(T2) to
B(L2(T2)).

It is known that slant Toeplitz operators on L2(T) are characterized as the
solutions X of the operator equation MzX = XMz2 (see [4]). We aim to charac-
terize slant Toeplitz operators on L2(T2) in a similar fashion. For this purpose,
we shall need the following prerequisites.

Proposition 2.7. For φ ∈ L∞(T2), we have the following for (i1, i2) ∈ Z× Z.

(1) M
z
i1
1 z

i2
2
E = EM

z
2i1
1 z

2i2
2

.

(2) M
z
2i1
1 z

2i2
2
Mφ = MφMz

2i1
1 z

2i2
2

.

Proof. (1) follows since M
z
i1
1 z

i2
2
E(zm1

1 zm2
2 ) = EM

z
2i1
1 z

2i2
2

(zm1
1 zm2

2 ) ={
z

m1
2

+i1
1 z

m2
2

+i2
2 if both m1 and m2 are even integers

0 otherwise.

To prove (2), consider φ ∈ L∞(T2) given as φ(z1, z2) =
∑

(m1,m2)∈Z×Z φm1,m2

zm1
1 zm2

2 . Then, for each (n1, n2) ∈ Z × Z, we find that M
z
2i1
1 z

2i2
2
Mφ(zn1

1 z
n2
2 ) =∑

(m1,m2)∈Z×Z φm1,m2z
m1+n1+2i1
1 zm2+n2+2i2

2 = MφMz
2i1
1 z

2i2
2

(zn1
1 zn2

2 ). This completes

the proof. �

We now extend the result of Ho [4] to the slant Toeplitz operators on L2(T2)
in the following theorem.

Theorem 2.8. A ∈ B(L2(T2)) is a slant Toeplitz operator if and only if
M

z
i1
1 z

i2
2
A = AM

z
2i1
1 z

2i2
2

for all (i1, i2) ∈ Z× Z.

Proof. Let A = Aφ be a slant Toeplitz operator on L2(T2). Then, M
z
i1
1 z

i2
2
Aφ =

M
z
i1
1 z

i2
2
EMφ = EM

z
2i1
1 z

2i2
2
Mφ = EMφMz

2i1
1 z

2i2
2

= AφMz
2i1
1 z

2i2
2
. Hence, A satisfies

the operator equation M
z
i1
1 z

i1
2
A = AM

z
2i1
1 z

2i2
2

.

Conversely, let A be a bounded operator on L2(T2) satisfying M
z
i1
1 z

i2
2
A =

AM
z
2i1
1 z

2i2
2

. For any element f(z1, z2) =
∑

(m1,m2)∈Z×Z fm1,m2 z
m1
1 zm2

2 ∈ L2(T2),

we have

Af(z21 , z
2
2) = A(

∑
(m1,m2)∈Z×Z

fm1,m2z
2m1
1 z2m2

2 )

=
∑

(m1,m2)∈Z×Z

fm1,m2A(z2m1
1 z2m2

2 )

=
∑

(m1,m2)∈Z×Z

fm1,m2AMz
2m1
1 z

2m2
2

(1)

=
∑

(m1,m2)∈Z×Z

fm1,m2Mz
m1
1 z

m2
2
A(1) = f(z1, z2)A(1).

Working along similar lines, we obtain that A(z1f(z21 , z
2
2)) = f(z1, z2)A(z1),

A(z2f(z21 , z
2
2)) = f(z1, z2)A(z2) and A(z1z2f(z21 , z

2
2)) = f(z1, z2)A(z1z2). We
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claim that each of the functions φ00 = A(1), φ10 = A(z1), φ01 = A(z2) and
φ11 = A(z1z2) belongs to L∞(T2).

Observe that for each i, j ∈ {0, 1},
‖φi,jf‖ = ‖A(zi1z

j
2f(z1, z2))‖ ≤ ‖A‖‖zi1z

j
2f(z1, z2)‖ = ‖A‖‖f‖.

This implies that each φi,j induces a bounded multiplication operator on L2(T2).
Thus each φi,j ∈ L∞(T2) for i, j ∈ {0, 1}.

Lastly, using these φij’s, we construct a φ in L∞(T2) such that A = Aφ. Let
φ(z1, z2) = φ00(z

2
1 , z

2
2) + z1φ10(z

2
1 , z

2
2) + z2φ01(z

2
1 , z

2
2) + z1z2φ11(z

2
1 , z

2
2). Then, φ ∈

L∞(T2). Also, for any f in L2(T2),

f(z1, z2) = f00(z
2
1 , z

2
2) + z1f10(z

2
1 , z

2
2) + z2f01(z

2
1 , z

2
2) + z1z2f11(z

2
1 , z

2
2).

Clearly, f00, f10, f01 and f11 ∈ L2(T2). Consider now

Aφf(z1, z2) = EMφf(z1, z2)

= E(φ00(z
2
1 , z

2
2)f00(z

2
1 , z

2
2) + φ10(z

2
1 , z

2
2)f10(z

2
1 , z

2
2) + φ01(z

2
1 ,

z22)f01(z
2
1 , z

2
2) + φ11(z

2
1 , z

2
2)f11(z

2
1 , z

2
2) + terms containing

zi1z
j
2 in which either i or j is odd)

= φ00(z1, z2)f00(z1, z2) + φ10(z1, z2)f10(z1, z2) + φ01(z1, z2)

f01(z1, z2) + φ11(z1, z2)f11(z1, z2)

= f00(z1, z2)A(1) + f10(z1, z2)A(z1) + f01(z1, z2)A(z2) + f11

(z1, z2)A(z1z2)

= A(f00(z
2
1 , z

2
2) + z1f10(z

2
1 , z

2
2) + z2f01(z

2
1 , z

2
2) + z1z2f11(z

2
1 ,

z22))

= Af(z1, z2).

Thus A = Aφ and the proof is complete. �

It is straightforward to observe that M
z
i1
1 z

i2
2

= M∗
z
i1
1 z

i2
2

= M−1
z
i1
1 z

i2
2

(i.e. M
z
i1
1 z

i2
2

is a unitary operator). Hence, slant Toeplitz operators on L2(T2) can also be
characterized in the following manner.

Corollary 2.9. A bounded operator A on L2(T2) is a slant Toeplitz operator if
and only if A = M

z
i1
1 z

i2
2
AM

z
2i1
1 z

2i2
2

for all (i1, i2) ∈ Z× Z.

Theorem 2.10. The set of all slant Toeplitz operators on L2(T2) is weakly closed
and hence strongly closed.

Proof. Let An → A weakly, where each An is a slant Toeplitz operator on L2(T2).
Then, for f, g ∈ L2(T2), 〈Anf, g〉 → 〈Af, g〉. This provides that

〈Anz2i11 z2i22 f, zi11 z
i2
2 g〉 → 〈Az2i11 z2i22 f, zi11 z

i2
2 g〉 = 〈M

z
i1
1 z

i2
2
AM

z
2i1
1 z

2i2
2
f, g〉.

Also, since each An is a slant Toeplitz operator, therefore making use of Corollary
2.9, M

z
i1
1 z

i2
2
AnMz

2i1
1 z

2i2
2

= An. Thus

〈Anz2i11 z2i22 f, zi11 z
i2
2 g〉 = 〈M

z
i1
1 z

i2
2
AnMz

2i1
1 z

2i2
2
f, g〉 = 〈Anf, g〉 → 〈Af, g〉.



SLANT TOEPLITZ OPERATORS ON THE TORUS 71

Therefore by uniqueness of limits, we obtain that 〈Af, g〉 = 〈M
z
i1
1 z

i1
2
AM

z
2i1
1 z

2i2
2
f, g〉

for all f, g ∈ L2(T2). Thus A = M
z
i1
1 z

i1
2
AM

z
2i1
1 z

2i2
2

. Therefore, A is a slant Toeplitz

operator on L2(T2). This completes the proof. �

Theorem 2.11. For φ ∈ L∞(T2), A∗φ is a slant Toeplitz operator on L2(T2) if
and only if φ = 0.

Proof. If φ = 0, nothing needs to be proved. Conversely, let A∗φ be a slant
Toeplitz operator, where φ(z1, z2) =

∑
(m1,m2)∈Z×Z φm1,m2z

m1
1 zm2

2 . Then, using the
characterization of slant Toeplitz operators, we have Mz1z2A

∗
φ = A∗φMz21z

2
2
. Hence,

〈Mz1z2A
∗
φz

n1
1 z

n2
2 , z

i1
1 z

i2
2 〉 = 〈A∗φMz21z

2
2
zn1
1 z

n2
2 , zi11 z

i2
2 〉 for each (n1, n2), (i1, i2) ∈ Z ×

Z. The structure of A∗φ provides that

φ2n1−i1+1,2n2−i2+1 = φ2n1−i1+4,2n2−i2+4

for each (n1, n2), (i1, i2) ∈ Z × Z. Once we put n1 = 0 = n2, we get that
φ−i1+1,−i2+1 = φ−i1+4,−i2+4 for each (i1, i2) ∈ Z × Z. This yields that φi1,i2 =
φi1+3m,i2+3m for each m ≥ 0 and for each (i1, i2) ∈ Z × Z. Since φ ∈ L∞(T2) ⊆
L2(T2), therefore

∑
m∈Z |φi1+3m,i2+3m|2 < ∞ and hence lim

m→∞
|φi1+3m,i2+3m| = 0.

This helps us to conclude that φ = 0. �

In order to discuss the compactness of slant Toeplitz operators on L2(T2), we
first describe compact multiplication operators on L2(T2).

It is known [3] that the only compact multiplication operator on L2(T) is the
zero operator. We obtain the same for multiplication operators on L2(T2) in the
following result.

Lemma 2.12. The multiplication operator Mφ on L2(T2), induced by φ ∈ L∞(T2),
is compact if and only if the inducing symbol φ = 0.

Proof. Let φ(z1, z2) =
∑

(m1,m2)∈Z×Z φm1,m2z
m1
1 zm2

2 ∈ L∞(T2) and Mφ be compact.
Since compact operators map weakly convergent sequences to strongly convergent
ones, we obtain for each (j1, j2) ∈ Z×Z and n2 ∈ Z, |〈Mφz

n1
1 z

n2
2 , z

n1+j1
1 zn2+j2

2 〉| ≤
‖Mφz

n1
1 z

n2
2 ‖ → 0 as n1 →∞.

Also, structure ofMφ provides that |〈Mφz
n1
1 z

n2
2 , z

n1+j1
1 zn2+j2

2 〉| = |〈
∑

(m1,m2)∈Z×Z

φm1,m2z
m1+n1
1 zm2+n2

2 , zn1+j1
1 zn2+j2

2 〉| = |φj1,j2|. Therefore, we obtain that φj1,j2 = 0
for each (j1, j2) ∈ Z× Z. Thus φ = 0.

Converse is straightforward. �

Now, we investigate the existence of compact slant Toeplitz operators on L2(T2)
and obtain the following.

Theorem 2.13. The only compact slant Toeplitz operator on L2(T2) is the zero
operator.

Proof. Let Aφ, where φ(z1, z2) =
∑

(m1,m2)∈Z×Z φm1,m2z
m1
1 zm2

2 ∈ L∞(T2), be com-
pact. Then, each operator AφMzp1z

q
2
E∗, for p and q equal to 0 and 1, is also
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compact. Also, for (i1, i2) ∈ Z× Z and p, q ∈ {0, 1} we obtain that

AφMzp1z
q
2
E∗(zi11 z

i2
2 ) = Aφ(z2i1+p1 z2i2+q2 )

= E(
∑

(m1,m2)∈Z×Z

φm1,m2z
m1+2i1+p
1 zm2+2i2+q

2 )

=
∑

(m1,m2)∈Z×Z

φ2m1−p,2m2−qz
m1+i1
1 zm2+i2

2

= Mξp,q(z
i1
1 z

i2
2 ),

where ξp,q(z1, z2) =
∑

(m1,m2)∈Z×Z φ2m1−p,2m2−qz
m1
1 zm2

2 ∈ L∞(T2). Hence, the op-

erators Mξp,q , p, q ∈ {0, 1} are compact. Making use of Lemma 2.12, we get that
for any (m1,m2) ∈ Z × Z and for each p, q ∈ {0, 1}, φ2m1−p,2m2−q = 0. This is
turn yields that φ = 0. Hence, Aφ = 0 and the proof is complete. �

3. Algebraic properties

This section aims at the study of some algebraic properties of slant Toeplitz
operators on L2(T2). We discuss sums and products of slant Toeplitz operators
induced by different symbols. Commutativity and essential commutativity of
these operators is also discussed.

Proposition 3.1. The sum of two slant Toeplitz operators on L2(T2) is a slant
Toeplitz operator.

Proof. Let Aφ and Aψ be two slant Toeplitz operators induced by symbols φ and
ψ in L∞(T2) respectively. Then, M

z
i1
1 z

i2
2

(Aφ + Aψ) = M
z
i1
1 z

i2
2
Aφ + M

z
i1
1 z

i2
2
Aψ =

AφMz
2i1
1 z

2i2
2

+ AψMz
2i1
1 z

2i2
2

= (Aφ + Aψ)M
z
2i1
1 z

2i2
2

. Hence, the sum Aφ + Aψ is a

slant Toeplitz operator.
In fact, Aφ+Aψ = EMφ+EMψ = EMφ+ψ = Aφ+ψ, the slant Toeplitz operator

on L2(T2) induced by the symbol φ+ ψ. �

In Proposition 2.7, we proved that M
z
i1
1 z

i1
2
E = EM

z
2i1
1 z

2i2
2

. We extend this

result and find that for any general φ ∈ L∞(T2), MφE = EMφ(z21 ,z
2
2)

.

Proposition 3.2. Let φ ∈ L∞(T2). Then, MφE = EMφ(z21 ,z
2
2)

(= Aφ(z21 ,z22)).

Proof. Let φ(z1, z2) =
∑

(n1,n2)∈Z×Z φn1,n2z
n1
1 z

n2
2 ∈ L∞(T2). For any pair (m1,m2) ∈

Z× Z, we obtain

MφE(z2m1
1 z2m2

2 ) =
∑

(n1,n2)∈Z×Z

φn1,n2z
n1+m1
1 zn2+m2

2 = EMφ(z21 ,z
2
2)

(z2m1
1 z2m2

2 ).

Also, for (i, j) ∈ {(1, 0), (0, 1), (1, 1)},

MφE(z2m1+i
1 z2m2+j

2 ) = 0 = EMφ(z21 ,z
2
2)

(z2m1+i
1 z2m2+j

2 ).

This completes the proof. �

Theorem 3.3. Let φ, ψ ∈ L∞(T2). Then, MφAψ is a slant Toeplitz operator and
MφAψ = Aφ(z21 ,z22)ψ.
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Proof. We haveM
z
i1
1 z

i2
2

(MφAψ) = MφMz
i1
1 z

i2
2
Aψ = (MφAψ)M

z
2i1
1 z

2i2
2
.Hence, MφAψ

is a slant Toeplitz operator on L2(T2).
Also, utilizing Proposition 3.2, we obtain that MφAψ = MφEMψ = EMφ(z21 ,z

2
2)
Mψ

= EMφ(z21 ,z
2
2)ψ

= Aφ(z21 ,z22)ψ. �

Theorem 3.4. For φ, ψ ∈ L∞(T2), MφAψ = AψMφ if and only if φ(z21 , z
2
2)ψ

= φψ. If ψ is invertible, then MφAψ = AψMφ if and only if φ is constant.

Proof. By Theorem 3.3, we have MφAψ = Aφ(z21 ,z22)ψ. Also, AψMφ = EMψMφ =
EMφψ = Aφψ.

Now, “only if” part is obvious, while “if” part follows using the injectivity of
the mapping φ 7→ Aφ.

Let φ(z1, z2) =
∑

(m1,m2)∈Z×Z φm1,m2z
m1
1 zm2

2 ∈ L∞(T2) for (z1, z2) ∈ T2. Let ψ

be invertible, then MφAψ = AψMφ, equivalently φ(z21 , z
2
2) = φ, or 〈φ(z21 , z

2
2) −

φ(z1, z2), z
i1
1 z

i2
2 〉 = 0 for each (i1, i2) ∈ Z× Z. But 〈φ(z21 , z

2
2)− φ(z1, z2), z

i1
1 z

i2
2 〉 ={

φ i1
2
,
i2
2
− φi1,i2 if both i1, i2 are even

−φi1,i2 otherwise.

Therefore, we obtain that φi1,i2 = 0 for each (0, 0) 6= (i1, i2) ∈ Z×Z i.e. φ(z1, z2) =
φ00( a constant).

Hence, for an invertible ψ, MφAψ = AψMφ if and only if φ is a constant
function. �

It is evident from Proposition 3.2 that the operators E and Mφ do not commute
in general. However, as a consequence of the above theorem, we find that for a
constant φ, E and Mφ commute.

Corollary 3.5. For φ ∈ L∞(T2), EMφ = MφE if and only if φ is constant.

We now focus our attention towards the product AφAψ of two slant Toeplitz
operators and obtain condition(s) for this product to be a slant Toeplitz operator.
For, we first observe the following.

Proposition 3.6. For φ ∈ L∞(T2), EAφ is a slant Toeplitz operator if and only
if φ = 0.

Proof. Let, if possible, EAφ = Aξ for some ξ(z1, z2) =
∑

(m1,m2)∈Z×Z ξm1,m2

zm1
1 zm2

2 ∈ L∞(T2). Let φ(z1, z2) =
∑

(m1,m2)∈Z×Z φm1,m2z
m1
1 zm2

2 ∈ L∞(T2). Then,

for each (n1, n2) ∈ Z×Z, we have EAφ(zn1
1 z

n2
2 ) = Aξ(z

n1
1 z

n2
2 ). This provides that

φ4m1−n1,4m2−n2 = ξ2m1−n1,2m2−n2 for each m1,m2, n1, n2 ∈ Z. For m1 = m2 = 0,
we get that φn1,n2 = ξn1,n2 for each (n1, n2) ∈ Z× Z.

Hence, for each (n1, n2) ∈ Z × Z, we obtain that φ2−n1,2−n2 = φ4−n1,4−n2 =
φ8−n1,8−n2 = · · · . Since lim

m→∞
|φ2m−n1,2m−n2 | = 0, so φ2−n1,2−n2 = 0 for each

(n1, n2) ∈ Z× Z. This provides that φ = 0.
Converse is trivial. �

Theorem 3.7. The operator AφAψ is a slant Toeplitz operator if and only if
φ(z21 , z

2
2)ψ = 0.
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Proof. By the definition of slant Toeplitz operator and using Proposition 3.2,
we obtain that AφAψ = E(MφE)Mψ = E(EMφ(z21 ,z

2
2)

)Mψ = E(EMφ(z21 ,z
2
2)ψ

) =
EAφ(z21 ,z22)ψ. The result now follows using Proposition 3.6. �

Next, we discuss the compactness of the product AφAψ of two slant Toeplitz
operators Aφ and Aψ. We shall require the following.

Lemma 3.8. Let φ ∈ L∞(T2). Then, we have the following.

(1) A1Aφ = 0 if and only if φ = 0.
(2) A1Aφ is compact if and only if φ = 0.

Proof. Let φ(z1, z2) =
∑

(m1,m2)∈Z×Z φm1,m2z
m1
1 zm2

2 ∈ L∞(T2). For (1), let A1Aφ =

0. But, A1Aφ = EM1EMφ = E2Mφ. Hence, we have

〈A1Aφz
n1
1 z

n2
2 , z

i1
1 z

i2
2 〉 = 〈E2Mφz

n1
1 z

n2
2 , z

i1
1 z

i2
2 〉

= 〈Aφzn1
1 z

n2
2 , z

2i1
1 z2i22 〉

= 〈
∑

(m1,m2)∈Z×Z

φ2m1−n1,2m2−n2z
m1
1 zm2

2 , z2i11 z2i22 〉

= φ4i1−n1,4i2−n2 .

Thus we obtain that φ4i1−n1,4i2−n2 = 0 for each (i1, i2), (n1, n2) ∈ Z × Z. Substi-
tuting n1 = 3i1 and n2 = 3i2, we obtain that φi1,i2 = 0 for each (i1, i2) ∈ Z × Z.
Thus φ = 0.

Converse is obvious.
For (2), let A1Aφ be compact. Then, we get that for each p, q ∈ {0, 1, 2, 3}, the

operator E2(A1AφMzp1z
q
2
)∗ is compact. Now for the case p = q = 0, we have

E2(A1AφMz01z
0
2
)∗zm1

1 zm2
2 = E2M∗

φz
4m1
1 z4m2

2 = E2(φ(z1z2)z
4m1
1 z4m2

2 )

= zm1
1 zm2

2 E2(φ(z1, z2))

= ME2(φ(z1,z2))
(zm1

1 zm2
2 ),

for each (m1,m2) ∈ Z×Z. Hence, E2(A1Aφ)∗ = ME2(φ(z1,z2))
. Now, the compact-

ness of E2(A1Aφ)∗ provides that ME2(φ(z1,z2))
is a compact operator and hence

E2(φ(z1, z2)) = 0. This provides that

0 = 〈E2(φ(z1, z2)), z
i1
1 z

i2
2 〉

= 〈
∑

(m1,m2)∈Z×Z

φm1,m2
z−m1
1 z−m2

2 , z4i11 z4i22 〉 = φ−4i1,−4i2 ,

for each (i1, i2) ∈ Z× Z.
Applying similar computations, we get that E2(A1AφMzp1z

q
2
)∗ = ME2(zp1z

q
2φ)

and

the compactness of these operators helps to provide that φ−4i1−p,−4i2−q = 0 for
(0, 0) 6= (p, q) ∈ {0, 1, 2, 3} × {0, 1, 2, 3}.

Thus φm1,m2 = 0 for each (m1,m2) ∈ Z× Z and hence φ = 0.
Nothing needs to be proved in the converse part. �

Proposition 3.9. The product AφAψ of two slant Toeplitz operators is 0 if and
only if φ(z21 , z

2
2)ψ = 0.
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Proof. Since AφAψ = EAφ(z21 ,z22)ψ, Lemma 3.8 together with the fact that E = A1

helps to provide that AφAψ = 0 if and only if φ(z21 , z
2
2)ψ = 0. �

We are now in a position to state the following result. It follows simply by
using together Theorem 3.7, Lemma 3.8 and Proposition 3.9.

Theorem 3.10. Let φ, ψ ∈ L∞(T2). Then, the following are equivalent:

(1) AφAψ is a compact operator.
(2) AφAψ is a slant Toeplitz operator.
(3) AφAψ = 0.
(4) φ(z21 , z

2
2)ψ = 0.

Remark 3.11. The following are now easy to obtain:

(1) A non-zero slant Toeplitz operator on L2(T2) can not be idempotent.
(2) The product of two slant Toeplitz operators on L2(T2) can not be a non-

zero slant Toeplitz operator on L2(T2).

Lastly, we obtain that the notions of commutativity and essential commuta-
tivity coincide for slant Toeplitz operators on L2(T2).

Theorem 3.12. The following are equivalent:

(1) Aφ and Aψ commute.
(2) Aφ and Aψ essentially commute.
(3) φ(z21 , z

2
2)ψ − ψ(z21 , z

2
2)φ = 0.

Proof. We shall first prove that (1) and (3) are equivalent. We obtain that
AφAψ = AψAφ if and only if EAφ(z21 ,z22)ψ = EAψ(z21 ,z22)φ. This is equivalent to

E(Aφ(z21 ,z22)ψ−ψ(z21 ,z22)φ) = 0.

Utilizing Lemma 3.8, we obtain that AφAψ = AψAφ if and only if φ(z21 , z
2
2)ψ

−ψ(z21 , z
2
2)φ = 0.

The equivalence of (2) and (3) follows using Lemma 3.8 since AφAψ−AψAφ =
E(Aφ(z21 ,z22)ψ−ψ(z21 ,z22)φ) and E = A1. �
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