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Abstract. In this paper, we study approximation properties of a family of
linear positive operators and establish the Voronovskaja type asymptotic for-
mula, local approximation and pointwise estimates using the Lipschitz type
maximal function. In the last section, we consider the King type modification
of these operators to obtain better estimates.

1. Introduction and preliminaries

In the field of approximation theory, the Bernstein polynomials discovered by
Bernstein [4] in 1912, possess many remarkable properties, and new generaliza-
tions and applications are being discovered by using these polynomials. The aim
of these generalizations is to provide appropriate and powerful tools to applied
areas such as numerical analysis, computer-aided geometric design, solutions of
differential equations and so on.

In 1968, Stancu [37] introduced a sequence of positive linear operators P
(α)
n :

C[0, 1]→ C[0, 1], depending on a nonnegative parameter α given by

P (α)
n (f ;x) =

n∑
k=0

p
(α)
n,k(x)f

(
k

n

)
, (1.1)
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where p
(α)
n,k(x) is the Polya distribution with the density function given by

p
(α)
n,k(x) =

(
n

k

)∏k−1
ν=0(x+ να)

∏n−k−1
µ=0 (1− x+ µα)∏n−1

λ=0(1 + λα)
, x ∈ [0, 1].

In the case α = 0, these operators reduce to the classical Bernstein polynomials.
For α = 1/n a special case of the operators (1.1) was considered by Lupaş and
Lupaş [26], which can be represented in an alternate form as

P (1/n)
n (f ;x) =

2(n!)

(2n)!

n∑
k=0

(
n

k

)
f

(
k

n

)
(nx)k(n− nx)n−k, (1.2)

where f ∈ C(I), with I = [0, 1] and (n)k = n(n+ 1)(n+ 2) . . . (x+ k − 1) is the
rising factorial. Recently Miclăuş [27] established some approximation results for
the operators (1.1) and for the case (1.2).

Recently, Gupta and Rassias [14] introduced the Durrmeyer type integral mod-
ification of the operators (1.2), which is based on the Polya distribution as follows:

D(1/n)
n (f ;x) = (n+ 1)

n∑
k=0

p
(1/n)
n,k (x)

∫ 1

0

pn,k(t)f(t)dt, (1.3)

where

p
(1/n)
n,k (x) =

2(n!)

(2n)!

(
n

k

)
(nx)k(n− nx)n−k

and

pn,k(t) =

(
n

k

)
tk(1− t)n−k, t ∈ I,

and studied asymptotic approximation, local and global results. In [3], Aral and
Gupta obtained a quantitative Voronovskaja type asymptotic formula and the
rate of convergence for bounded variation functions for the operators (1.3). Some
approximation properties related the present paper can be found in [13] and in
the recent book by Gupta and Agarwal [12].

In [37], Stancu introduced and investigated a new parameter-dependent linear
positive operators of Bernstein type associated to a function f ∈ C(I). The new
construction of his operators shows that the new sequence of Bernstein polyno-
mials present a better approach with the suitable selection of the parameters.

In the recent years, Stancu type generalization of the certain operators are
introduced by several researchers and they obtained different type of approxima-
tion properties of many operators; we refer the reader to some of the important
papers in this direction such as [5, 18, 20,21,23,35] and so on. Various investiga-
tors such as [7–10, 14–16, 19, 20, 29–36] determined interesting results with their
approximation properties.

Inspired by the above work, for f ∈ C(I), we introduce the Stancu type gen-
eralization of the operators (1.3):

D
(1/n)
n,α,β(f ;x) = (n+ 1)

n∑
k=0

p
(1/n)
n,k (x)

∫ 1

0

pn,k(t)f

(
nt+ α

n+ β

)
dt. (1.4)
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The purpose of this paper is to study the Voronovskaja type theorem, local ap-
proximation, and pointwise estimates for the operators (1.4). We also propose
and discuss the King type modification of the operators (1.4).

2. Moment estimates

We start this section with the following useful lemmas, which will be used in
main results.

Lemma 2.1 ([14]). For the operators D
(1/n)
n (f ;x), we have

(1) D
(1/n)
n (1;x) = 1,

(2) D
(1/n)
n (t;x) = nx+1

n+2
,

(3) D
(1/n)
n (t2;x) = n3x2+5n2x−n2x2+3nx+2n+2

(n+1)(n+2)(n+3)
,

(4) D
(1/n)
n (t3;x) = 1

(n+2)(n+3)(n+4)

(
n3x3 + 6n4x2(1−x)

(n+1)(n+2)
+ 6n3x(1−x)

(n+1)(n+2)
+ 6n2x2

+12n2x(1−x)
n+1

+ 11nx+ 6
)
,

(5) D
(1/n)
n (t4;x) = 1

(n+2)(n+3)(n+4)(n+5)

(
n4x4+ 12n4(n2+1)x3(1−x)

(n+1)(n+2)(n+3)
+ 12n4(3n−1)x2(1−x)

(n+1)(n+2)(n+3)

+ 2n4(13n−1)x(1−x)
n(n+1)(n+2)(n+3)

+10n3x3 + 60n4x2(1−x)
(n+1)(n+2)

+ 60n3x(1−x)
(n+1)(n+2)

+ 35n2x2 + 70n2x(1−x)
n+1

+50nx+ 24
)
.

Lemma 2.2. For the operators D
(1/n)
n,α,β(f ;x), we have

(1) D
(1/n)
n,α,β(1;x) = 1,

(2) D
(1/n)
n,α,β(t;x) = n2x+n(α+1)+2α

(n+β)(n+2)
,

(3) D
(1/n)
n,α,β(t2;x) =

(
n4(n−1)

(n+β)2(n+1)(n+2)(n+3)

)
x2 +

(
n3(5n+3)+2n2α(n+1)(n+3)
(n+β)2(n+1)(n+2)(n+3)

)
x

+2n2+2nα(n+3)+α2(n+2)(n+3)
(n+β)2(n+2)(n+3)

,

(4) D
(1/n)
n,α,β(t3;x) = 1

(n+β)3(n+1)(n+2)(n+3)(n+4)

×
(
n6(n+ 1)x3 + 6n7x2(1−x)

n+2
+ 6n6x(1−x)

n+2
+ 6n5x(2−x) + 11n4x

+6n3 + 3n2α(n+ 4)(n3x2 + 5n2x−n2x2 + 3nx+ 2n+ 2)
)

+3nα2(nx+1)+α3(n+2)
(n+β)3(n+2)

,

(5) D
(1/n)
n,α,β(t4;x) = 1

(n+β)4(n+1)(n+2)(n+3)(n+4)(n+5)

×
(
n8(n+ 1)x4 + 12n8(n2+1)x3(1−x)

(n+2)(n+3)
+ 12n8(3n−1)x2(1−x)

(n+2)(n+3)

+2n7(13n−1)x(1−x)
(n+2)(n+3)

+ 10n7(n+ 1)x3 + 60n8x2(1−x)
(n+2)

+ 60n7x(1−x)
(n+2)

+35n6(n+1)x2+70n6x(1−x)+50n5(n+1)x+24n4(n+1)

+4n6(n+ 1)αx3 + 6n7x2(1−x)α
n+2

+ 6n6x(1−x)α
n+2

+ 6n5x(2− x)α

+11n4(n+ 1)αx+ 6n3(n+ 1)αx
+6n2α2(n+ 4)(n+ 5)(n3x2 + 5n2x− n2x2 + 3nx+ 2n

+2)
)

+ 4nα3(nx+1)+α4(n+2)
(n+β)4(n+2)

.
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Proof. For x ∈ I, in view of Lemma 2.1, we have

D
(1/n)
n,α,β(1;x) = 1.

The first order moment is given by

D
(1/n)
n,α,β(t;x) =

n

n+ β
D(1/n)
n (t;x) +

α

n+ β
=
n2x+ n(α + 1) + 2α

(n+ β)(n+ 2)
.

The second order moment is given by

D
(1/n)
n,α,β(t2;x) =

(
n

n+ β

)2

D(1/n)
n (t2;x) +

2nα

(n+ β)2
D(1/n)
n (t;x) +

(
α

n+ β

)2

=

(
n4(n− 1)

(n+ β)2(n+ 1)(n+ 2)(n+ 3)

)
x2

+

(
n3(5n+ 3) + 2n2α(n+ 1)(n+ 3)

(n+ β)2(n+ 1)(n+ 2)(n+ 3)

)
x

+
2n2 + 2nα(n+ 3) + α2(n+ 2)(n+ 3)

(n+ β)2(n+ 2)(n+ 3)
.

Similarly, we obtain third and fourth order moments. �

Lemma 2.3. For f ∈ CB(I) (space of all real valued bounded functions on I
endowed with norm ‖ f ‖CB(I)= sup

x∈I
|f(x)|), we have

‖ D(1/n)
n,α,β(f) ‖≤‖ f ‖ .

Proof. In view of (1.4) and Lemma 2.2, we get

‖D(1/n)
n,α,β(f)‖ ≤ ‖f‖D(1/n)

n,α,β(1;x) = ‖f‖.
�

Remark 2.4. By simple applications of Lemma 2.2, we have

D
(1/n)
n,α,β ((t− x);x) =

n(α + 1) + 2α− (2β + nβ + 2n)x

(n+ β)(n+ 2)

= ξ
(1/n)
n,α,β(x)

and

D
(1/n)
n,α,β

(
(t− x)2;x

)
=

(
−3n4 + 5n3 + n3β2 + 4n3β + 6n2β2 + 11nβ2 + 16n2β + 12nβ

(n+ β)2(n+ 1)(n+ 2)(n+ 3)

)
x2

+

(
5n4 + 3n3 + 2n2α(n+ 1)(n+ 3)− 2(nα+ n+ 2α)(n+ β)(n+ 1)(n+ 3)

(n+ β)2(n+ 1)(n+ 2)(n+ 3)

)
x

+
2n2 + 2nα(n+ 3) + α2(n+ 2)(n+ 3)

(n+ β)2(n+ 2)(n+ 3)

=ζ
(1/n)
n,α,β (x).
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Further,

D
(1/n)
n,α,β

(
(t− x)4;x

)
= O

(
1

n2

)
, as n→∞.

3. Main results

Let ei(t) = ti, i = 0, 1, 2.

Theorem 3.1. Let f ∈ C(I). Then lim
n→∞

D
(1/n)
n,α,β(f ;x) = f(x), uniformly in each

compact subset of I.

Proof. In view of Lemma 2.2, we get

lim
n→∞

D
(1/n)
n,α,β(ei;x) = xi, i = 0, 1, 2,

uniformly in each compact subset of I. Applying the Bohman–Korovkin theorem,

it follows that lim
n→∞

D
(1/n)
n,α,β(f ;x) = f(x), uniformly in each compact subset of

I. �

3.1. Voronovskaja type theorem. In this section, we prove the Voronvoskaya

type asymptotic theorem for the operators D
(1/n)
n,α,β .

Theorem 3.2. Let f be a bounded and integrable function on I, and let the
second derivative of f exist at a fixed point x ∈ I. Then

lim
n→∞

n
(
D

(1/n)
n,α,β(f ;x)− f(x)

)
= ((α + 1)− (β + 2)x) f ′(x) +

3

2
x(1− x)f ′′(x).

Proof. Let x ∈ I be fixed. Using Taylor’s expansion formula of the function f
implies that

f(t) = f(x) + (t− x)f ′(x) +
1

2
f ′′(x)(t− x)2 + r(t, x)(t− x)2, (3.1)

where r(t, x) is a bounded function and lim
t→x

r(t, x) = 0.

Applying D
(1/n)
n,α,β on both sides of (3.1), we get

n
(
D

(1/n)
n,α,β(f ;x)− f(x)

)
= nf ′(x)D

(1/n)
n,α,β ((t− x);x) +

1

2
nf ′′(x)D

(1/n)
n,α,β

(
(t− x)2;x

)
+nD

(1/n)
n,α,β

(
(t− x)2r(t, x);x

)
.

In view of Remark 2.4, we have

lim
n→∞

nD
(1/n)
n,α,β ((t− x);x) = (α + 1)− (β + 2)x (3.2)

and

lim
n→∞

nD
(1/n)
n,α,β

(
(t− x)2;x

)
= 3x(1− x). (3.3)

Now, we shall show that

lim
n→∞

nD
(1/n)
n,α,β

(
r(t, x)(t− x)2;x

)
= 0.
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Using the Cauchy–Schwarz inequality, we have

D
(1/n)
n,α,β

(
r(t, x)(t− x)2;x

)
≤

(
D

(1/n)
n,α,β(r2(t, x);x)

)1/2 (
D

(1/n)
n,α,β((t− x)4;x)

)1/2
. (3.4)

We observe that r2(x, x) = 0 and r2(., x) ∈ CB(I). Then, it follows that

lim
n→∞

D
(1/n)
n,α,β(r2(t, x);x) = r2(x, x) = 0. (3.5)

Now, from (3.4) and (3.5), we obtain

lim
n→∞

nD
(1/n)
n,α,β

(
r(t, x)(t− x)2;x

)
= 0. (3.6)

From (3.2), (3.3) and (3.6), we get the required result. �

The next theorem uses the asymptotic formulas fulfilled by D
(1/n)
n,α,β and D

(1/n)
n

to state a sort of weak result that shows that for certain family of illustrative
functions the new sequence approximates better than the previous operators.

Theorem 3.3. Let f ∈ C2(I). Assume that there exists n0 ∈ N, such that

f(x) ≤ D
(1/n)
n,α,β(f ;x) ≤ D(1/n)

n (f ;x) (3.7)

for all n ≥ n0 and x ∈ (0, 1). Then

3

2
x(1− x)f ′′(x) ≥ (α− βx)f ′(x) ≥ 0 x ∈ (0, 1). (3.8)

In particular, f ′(x) ≥ 0 and f ′′(x) ≥ 0.
Conversely, if (3.8) holds with strict inequalities at a given point x ∈ (0, 1),

then there exists n0 ∈ N such that for n ≥ n0

f(x) < D
(1/n)
n,α,β(f ;x) < D(1/n)

n (f ;x).

Proof. From (3.7), we have

0 ≤ n(D
(1/n)
n,α,β(f ;x)− f(x)) ≤ n(D(1/n)

n (f ;x)− f(x))

for all n ≥ n0 and x ∈ (0, 1).
Then, using Theorem 3.2 and [14] implies that

0 ≤ (α− βx)f ′(x) ≤ 3

2
x(1− x)f ′′(x),

from which (3.8) follows directly.
Conversely, if (3.8) holds with strict inequalities for a given x ∈ (0, 1), then

directly

0 < (α− βx)f ′(x) <
3

2
x(1− x)f ′′(x),

and using again Theorem 3.2 and [14] completes the proof. �
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3.2. Local approximation. We begin by recalling the following K-functional:

K2(f, δ) = inf{‖ f − g ‖ +δ ‖ g′′ ‖: g ∈ W 2},

where δ > 0 and W 2 = {g ∈ CB(I) : g′, g′′ ∈ CB(I)}. By, [7, p.177, Theorem
2.4], there exists an absolute constant M > 0 such that

K2(f, δ) ≤Mω2(f,
√
δ), (3.9)

where

ω2(f,
√
δ) = sup

0<h≤
√
δ

sup
x,x+2h∈I

| f(x+ 2h)− 2f(x+ h) + f(x) |

is the second order modulus of smoothness of f ∈ CB(I). We denote the first
order modulus of continuity of f ∈ CB(I) by

ω(f, δ) = sup
0<h≤δ

sup
x,x+h∈I

| f(x+ h)− f(x) | .

Theorem 3.4. Let f ∈ CB(I). Then, for every x ∈ I, we have

| D(1/n)
n,α,β (f ;x)− f(x) | ≤ Mω2

(
f, χ

(1/n)
n,α,β(x)

)
+ ω

(
f, ξ

(1/n)
n,α,β

)
,

where M is a positive constant and

χ
(1/n)
n,α,β(x) =

(
ζ
(1/n)
n,α,β (x) +

(
ξ
(1/n)
n,α,β

)2)1/2

.

Proof. For x ∈ I, we consider the auxiliary operators D
(1/n)

n,α,β defined by

D
(1/n)

n,α,β(f ;x) = D
(1/n)
n,α,β(f ;x)− f

(
n2x+ n(α + 1) + 2α

(n+ β)(n+ 2)

)
+ f(x). (3.10)

From Lemma 2.2, we observe that the operators D
(1/n)

n,α,β are linear and reproduce
the linear functions.

Hence

D
(1/n)

n,α,β((t− x);x) = 0. (3.11)

Let g ∈ W 2 and x, t ∈ I. By Taylor’s expansion, we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− v)g′′(v)dv.

Applying D
(1/n)

n,α,β on both sides of the above equation and using (3.11), we get

D
(1/n)

n,α,β(g;x)− g(x) = D
(1/n)

n,α,β

(∫ t

x

(t− v)g′′(v)dv, x

)
.
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Thus, by (3.10), we get

|D(1/n)

n,α,β(g;x)− g(x)| ≤ D
(1/n)
n,α,β

(∣∣∣∣ ∫ t

x

(t− v)g′′(v)dv

∣∣∣∣, x)

+

∣∣∣∣ ∫ n2x+n(α+1)+2α
(n+β)(n+2)

x

(
n2x+ n(α + 1) + 2α

(n+ β)(n+ 2)
− v
)
g′′(v)dv

∣∣∣∣
≤

(
ζ
(1/n)
n,α,β (x) +

(
ξ
(1/n)
n,α,β(x)

)2)
‖ g′′ ‖

≤
(
χ
(1/n)
n,α,β(x)

)2
‖ g′′ ‖ . (3.12)

On the other hand, by (3.10) and Lemma 2.3, we have

|D(1/n)

n,α,β(f ;x)| ≤ ‖ f ‖ . (3.13)

Using (3.12) and (3.13) in (3.10), we obtain

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ |D(1/n)

n,α,β(f − g;x)|+ |(f − g)(x)|+ |D(1/n)

n,α,β(g;x)− g(x)|

+

∣∣∣∣f (n2x+ n(α + 1) + 2α

(n+ β)(n+ 2)

)
− f(x)

∣∣∣∣
≤ 2 ‖ f − g ‖ +

(
χ
(1/n)
n,α,β(x)

)2
‖ g′′ ‖

+

∣∣∣∣f (n2x+ n(α + 1) + 2α

(n+ β)(n+ 2)

)
− f(x)

∣∣∣∣.
Taking infimum over all g ∈ W 2, we get

| D(1/n)
n,α,β(f ;x)− f(x) | ≤ K2

(
f, (χ

(1/n)
n,α,β(x))2

)
+ ω

(
f, ξ

(1/n)
n,α,β(x)

)
.

In view of (3.9), we get

| D(1/n)
n,α,β(f ;x)− f(x) | ≤ Mω2

(
f, χ

(1/n)
n,α,β(x)

)
+ ω

(
f, ξ

(1/n)
n,α,β(x)

)
,

which completes the proof. �

Let a1, a2 > 0 be fixed. We define the following Lipschitz-type space (see [33]):

Lip
(a1,a2)
M (η) =

{
f ∈ C(I) : |f(t)− f(x)| ≤M

|t− x|η

(t+ a1x2 + a2x)η/2
; x, t ∈ (0, 1]

}
,

where M is a positive constant and 0 < η ≤ 1.

Theorem 3.5. Let f ∈ Lip
(a1,a2)
M (η). Then, for all x ∈ (0, 1], we have

|D(1/n)
n,α,β(f ;x)− f(x)| ≤M

(
ζ
(1/n)
n,α,β (x)

a1x2 + a2x

)η/2

.
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Proof. First, we prove the result for the case η = 1. Then, for f ∈ Lip
(a1,a2)
M (1),

and x ∈ (0, 1], we have

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ D

(1/n)
n,α,β(|f(t)− f(x)|;x)

≤ MD
(1/n)
n,α,β

(
|t− x|

(t+ a1x2 + a2x)1/2
;x

)
≤ M

(a1x2 + a2x)1/2
D

(1/n)
n,α,β(|t− x|;x).

Applying the Cauchy–Schwarz inequality, we get

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ M

(a1x2 + a2x)1/2

(
D

(1/n)
n,α,β((t− x)2;x)

)1/2
≤ M

(
ζ
(1/n)
n,α,β (x)

a1x2 + a2x

)1/2

.

Thus the result holds for η = 1.
Now, we prove that the result is true for the case 0 < η < 1. For f ∈

Lip
(a1,a2)
M (η) and x ∈ (0, 1], we get

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ M

(a1x2 + a2x)η/2
D

(1/n)
n,α,β(|t− x|η;x).

Taking p = 1
η

and q = p
p−1 , applying the Hölders inequality, we have

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ M

(a1x2 + a2x)η/2

(
D

(1/n)
n,α,β(|t− x|;x)

)η
.

Finally by the Cauchy–Schwarz inequality, we get

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ M

(
ζ
(1/n)
n,α,β (x)

a1x2 + a2x

)η/2

.

Thus, the proof is completed. �

3.3. Pointwise estimates. In the present section, we obtain some pointwise

estimates of the rate of convergence of the operators D
(1/n)
n,α,β . First, we give the

relationship between the local smoothness of f and local approximation.
We know that a function f ∈ C(I) is in LipMf

(η) on E, where η ∈ (0, 1] and
E ⊂ I if it satisfies the condition

|f(t)− f(x)| ≤Mf |t− x|η, t ∈ E and x ∈ I,

where Mf is a constant depending only on η and f .

Theorem 3.6. Let f ∈ C(I) ∩ LipMf
(η), η ∈ (0, 1] and let E be any bounded

subset of the interval I. Then, for each x ∈ I, we have

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ Mf

((
ζ
(1/n)
n,α,β (x)

)η/2
+ 2(d(x,E))η

)
,
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where Mf is a constant depending on η and f and d(x,E) is the distance between
x and E defined as

d(x,E) = inf{|t− x| : t ∈ E}.

Proof. Let E be the closure of E in I. Then, there exists at least one point x0 ∈ E
such that

d(x,E) = |x− x0|.
From the triangle inequality, we have

|f(t)− f(x)| ≤ |f(t)− f(x0)|+ |f(x)− f(x0)|.

Using the definition of LipMf
(η), we get

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ D

(1/n)
n,α,β(|f(t)− f(x0)|;x) +D

(1/n)
n,α,β(|f(x)− f(x0)|;x)

≤ Mf

(
D

(1/n)
n,α,β(|t− x0|η;x) + |x− x0|η

)
≤ Mf

(
D

(1/n)
n,α,β(|t− x|η;x) + 2|x− x0|η

)
.

Now, applying the Hölder’s inequality with p =
2

η
and

1

q
= 1− 1

p
, we obtain

|D(1/n)
n,α,β(f ;x)− f(x)| ≤Mf

(
{D(1/n)

n,α,β(|t− x|2;x)}η/2 + 2(d(x,E))η
)
,

from which the desired result is obtained immediately. �

Next, we obtain the local direct estimate of the operators defined in (1.4), using
the Lipschitz-type maximal function of order η introduced by B. Lenze [25] as

ω̃η(f, x) = sup
t6=x, t∈I

|f(t)− f(x)|
|t− x|η

x ∈ I and η ∈ (0, 1]. (3.14)

Theorem 3.7. Let f ∈ CB(I) and 0 < η ≤ 1. Then, for all x ∈ I, we have

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ ω̃η(f, x)

(
ζ
(1/n)
n,α,β (x)

)η/2
.

Proof. In view of (3.14), we have

|f(t)− f(x)| ≤ ω̃η(f, x)|t− x|η

and

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ ω̃η(f, x)D

(1/n)
n,α,β(|t− x|η;x).

Applying the Hölder’s inequality with p =
2

η
and

1

q
= 1− 1

p
, we get

|D(1/n)
n,α,β(f ;x)− f(x)| ≤ ω̃η(f, x)D

(1/n)
n,α,β((t− x)2;x)η/2

≤ ω̃η(f, x)
(
ζ
(1/n)
n,α,β (x)

)η/2
.

Thus, the proof is completed. �
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4. King type modification

In this section, we discuss better convergence rates by King type operators.
To make the convergence faster, King [17] proposed an approach to modify the
classical Bernstein polynomial, so that the sequence preserve test functions e0 and
e2, where ei(t) = ti, i = 0, 1, 2. After this approach many researcher contributed
in this direction.

As the operator D
(1/n)
n,α,β(f ;x) defined in (1.4) preserves only the constant func-

tions, so further modification of these operators is proposed to be made, so that
the modified operators preserve the constant as well as linear functions.

For this purpose the modification of (1.4) is defined as

D̂
(1/n)
n,α,β(f ;x) = (n+ 1)

n∑
k=0

p
(1/n)
n,k (rn(x))

∫ 1

0

pn,k(t)f

(
nt+ α

n+ β

)
dt (4.1)

where rn(x) =
(n+ β)(n+ 2)x− n(α + 1)− 2α

n2
and x ∈ In = [ α

n+β
, 1].

Lemma 4.1. For every x ∈ In, we have

(1) D̂
(1/n)
n,α,β(1;x) = 1,

(2) D̂
(1/n)
n,α,β(t;x) = x,

(3) D̂
(1/n)
n,α,β(t2;x) =

(n− 1)(n+ 2)x2

(n+ 1)(n+ 3)
+

(3n2 + 6nα + n+ 10α)x

(n+ β)(n+ 1)(n+ 3)

+5n2α2−22n2α−11nα2−2n3

(n+β)2(n+1)(n+2)(n+3)
.

Consequently, for each x ∈ In, we have the following equalities:

D̂
(1/n)
n,α,β((t− x);x) = 0,

and

D̂
(1/n)
n,α,β((t− x)2, x) =

−(3n+ 5)x2

(n+ 1)(n+ 3)
+

(3n2 + 6nα + n+ 10α)x

(n+ β)(n+ 1)(n+ 3)

+
5n2α2 − 22n2α− 11nα2 − 2n3

(n+ β)2(n+ 1)(n+ 2)(n+ 3)

= λ
(1/n)
n,α,β(x). (4.2)

Theorem 4.2. For f ∈ CB(In), we have

|D̂(1/n)
n,α,β(f ;x)− f(x)| ≤M ′ω2

(
f,

√
λ
(1/n)
n,α,β(x)

)
,

where λ
(1/n)
n,α,β(x) is given by (4.2) and M ′ is a positive constant.

Proof. Let g ∈ W 2 and x, t ∈ In. Using Taylor’s expansion, we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− v)g′′(v)dv.
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Applying D̂
(1/n)
n,α,β , we get

D̂
(1/n)
n,α,β(g;x)− g(x) = D̂

(1/n)
n,α,β

(∫ t

x

(t− v)g′′(v)dv;x

)
.

Obviously, we have

∣∣∣∣∫ t

x

(t− v)g′′(v)dv

∣∣∣∣ ≤ (t− x)2‖g′′‖. Therefore,

| D̂(1/n)
n,α,β(g;x)− g(x) |≤ D̂

(1/n)
n,α,β((t− x)2;x) ‖ g′′ ‖= λ

(1/n)
n,α,β(x) ‖ g′′ ‖ .

Since | D̂(1/n)
n,α,β(f ;x) |≤ ‖f‖, we get

| D̂(1/n)
n,α,β(f ;x)− f(x) |

≤| D̂(1/n)
n,α,β(f − g;x) | + | (f − g)(x) | + | D̂(1/n)

n,α,β(g;x)− g(x) |

≤ 2‖f − g‖+ λ
(1/n)
n,α,β(x)‖g′′‖.

Finally, taking the infimum over all g ∈ W 2 and using (3.9), we obtain

| D̂(1/n)
n,α,β(f ;x)− f(x) |≤M ′ω2

(
f,

√
λ
(1/n)
n,α,β(x)

)
,

which proves the theorem. �

Theorem 4.3. Let f ∈ CB(In). If f ′ and f ′′ exist at a fixed point x ∈ In, then
we have

lim
n→∞

n
(
D̂

(1/n)
n,α,β(f ;x)− f(x)

)
=

3

2
x(1− x)f ′′(x).

The proof follows along the lines of Theorem 3.2.
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