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RUSCHEWEYH-TYPE HARMONIC FUNCTIONS
DEFINED BY q- DIFFERENTIAL OPERATORS

GANGADHARAN MURUGUSUNDARAMOORTHY1∗ AND JAY M. JAHANGIRI2

Communicated by H.R. Ebrahimi Vishki

Abstract. A class of Ruscheweyh-type harmonic functions is defined, using
q-differential operators and sufficient coefficient conditions for this class is de-
termined. We then consider a subclass of the aforementioned class consisting of
functions with real coefficients and obtain necessary and sufficient coefficient
bounds, distortion theorem, extreme points, and convex combination condi-
tions for such class. It is shown that the classes of functions considered in this
paper contain various well-known as well as new classes of harmonic functions.

1. Introduction and preliminaries

A continuous function f = u + iv is a complex- valued harmonic function in a
complex domain Ω if both u and v are real and harmonic in Ω. In any simply-
connected domain D ⊂ Ω, we can write f = h + g, where h and g are analytic
in D. We call h the analytic part and g the co-analytic part of f. A necessary
and sufficient condition for f to be locally univalent and orientation preserving
in D is that |h′(z)| > |g′(z)| in D (see [2]). Let H denote the family of functions
f = h+ g which are harmonic, univalent, and orientation preserving in the open
unit disc U = {z : |z| < 1} and are of the form

f(z) = h(z) + g(z) = z +
∞∑
n=2

anz
n +

∞∑
n=1

bnzn.

Obviously, |b1| < 1 and the family H reduces to the well known class S of normal-
ized analytic univalent functions if the co-analytic part of f is identically zero,
that is, g ≡ 0.
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The Hadamard product or convolution of two power series h1(z) =
∑∞

n=1 anz
n

and h2(z) =
∑∞

n=1 cnz
n is given by h1(z) ∗ h2(z) = (h1 ∗ h2)(z) =

∑∞
n=1 ancnz

n,
and the convolution of two harmonic functions

f1(z) = h1(z) + g1(z) and f2(z) = h2(z) + g2(z)

is given by

f1(z)∗̃f2(z) = (f1∗̃f2)(z) = h1(z) ∗ h2(z) + g1(z) ∗ g2(z).

Next we recall the notion of q-operator or q-difference operator that plays a
vital role in the theory of hypergeometric series, quantum physics, and operator
theory. In 1908, Jackson [3] initiated the application of q-calculus to analytic
functions. For 0 < q < 1, Jackson’s q-derivative of the function h(z) = z +∑∞

n=2 anz
n ∈ S is given by

Dqh(z) =


h(z)− h(qz)

(1− q)z
for z 6= 0,

h′(0) for z = 0,

where Dqh(z) = 1 +
∑∞

n=2[n]qanz
n−1 and [n]q = 1−qn

1−q .

In 2014, Kannas and Raducanu [7] introduced and investigated the Ruscheweyh-
type q-differential operator

Rm
q h(z) = h(z) ∗ Fq,m+1(z) = z +

∞∑
n=2

Γq(n+m)

[n− 1]!Γq(1 +m)
anz

n, m > −1,

where

Fq,m+1(z) = z +
∞∑
n=2

Γq(n+m)

[n− 1]!Γq(1 +m)
zn = z +

∞∑
n=2

[m+ 1]n−1

[n− 1]!
zn.

Observe that

R0
qh(z) = h(z),

R1
qh(z) = zDqh(z),

...

Rm
q h(z) =

zDm
q (zm−1h(z))

[m]!
,

where D2
qh(z) = Dq(Dqh(z)) and Dmq h(z) = Dm−1

q (Dqh(z)).
Obviously

Rm
q h(z) = z +

∞∑
n=2

Γq(n+m)

[n− 1]!Γq(1 +m)
anz

n,

lim
q→1−

Rm
q h(z) = Rmh(z) = h(z) ∗ z

(1− z)m+1
,

and

lim
q→1−

Fq,m+1(z) = Fm+1(z) =
z

(1− z)m+1
.
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We remark that if q → 1−, then the Ruscheweyh q-differential operator reduces
to the differential operator defined by Ruscheweyh [8],

Dq(Rm
q h(z)) = 1 +

∞∑
n=2

[n]q
Γq(n+m)

[n− 1]!Γq(1 +m)
anz

n−1.

Recently, Jahangiri [5] applied q-difference operators to classes of harmonic
functions and obtained coefficient bounds for such functions. Motivated by [7] and
[5], we define a class of Ruscheweyh-type q-calculus harmonic functions Hm

q (λ, γ)
consisting of functions f∈H satisfying

<
(

zDq(Rm
q f(z))

(1− λ)z′ + λ(Rm
q f(z))

)
≥ γ, (1.1)

where z ∈ U, 0 ≤ λ ≤ 1, z′ = ∂
∂θ

(z = reiθ), and

zDq(Rm
q f(z)) = zDq(Rm

q h(z))− zDq(Rm
q g(z)).

We also define Hm

q (λ, γ) ≡ Hm
q (λ, γ) ∩ H, where H is the subfamily of H

consisting of harmonic functions of the form

f(z) = z −
∞∑
n=2

anz
n +

∞∑
n=1

bnz
n, an ≥ 0, bn ≥ 0. (1.2)

The following special cases clearly demonstrate the significance of the class
Hm
q (λ, γ).

(i) If q → 1−, then Hm
1 (λ, γ) ≡ RH(λ, γ) consists of functions f∈H satisfying

<
(

zD(Rmf(z))

(1− λ)z′ + λ(Rmf(z))

)
≥ γ, (m > −1),

where Rmf(z)) is the differential operator defined by Ruscheweyh [8] and
Hm

1 (1, γ) is the class considered in [6].
(ii) If q → 1− and m = 0, then H0

1(λ, γ)≡H(λ, γ) is the class defined in [9]
that consists of functions f∈H satisfying

<
(

zf ′(z)

(1− λ)z + λf(z)

)
≥ γ.

(iii) If q → 1−, m = 0 and λ = 1, then H0
1(1, γ)≡SH(γ) is the class defined in

[4] that consists of functions f∈H satisfying

<
(
zf ′(z)

f(z)

)
≥ γ.

(iv) If q → 1−, m = 0 and λ = 0, then H0
1(0, γ)≡NH(γ) is the class defined in

[1] that consists of functions f∈H satisfying

< (f ′(z)) ≥ γ.

(v) If λ = 0, then Hm
q (0, γ) ≡ NHm

q (γ) consists of functions f∈H satisfying

<
(
zDq(Rm

q f(z))

z′

)
≥ γ .
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(vi) If λ = 1, then Hm
q (1, γ) ≡ Hm

q (γ) consists of functions f∈H satisfying

<
(
zDq(Rm

q f(z))

Rm
q f(z)

)
≥ γ .

It is the aim of this paper to obtain sufficient coefficient conditions for harmonic
functions f = h+ g to be in the class Hm

q (λ, γ). We also determine necessary and
sufficient coefficient conditions for harmonic functions f = h+g to be in the class
Hm

q (λ, γ). Furthermore, distortion theorems and extreme points for functions in

Hm

q (λ, γ) are also obtained.

2. Main results

Throughout this section, unless otherwise stated, we shall use the notation

Φq(n,m) =
Γq(n+m)

(n− 1)!Γq(1 +m)
.

First we obtain a sufficient coefficient condition for harmonic functions in
Hm
q (λ, γ).

Theorem 2.1. Let f = h+ g ∈ H. If

∞∑
n=1

(
[n]q − γλ

1− γ
|an|+

[n]q + γλ

1− γ
|bn|
)

Φq(n,m) ≤ 2, (2.1)

where a1 = 1 and 0 ≤ γ < 1, then f ∈ Hm
q (λ, γ).

Proof. We will show that if the coefficients of the harmonic function f = h+g ∈ H
satisfy the inequality (2.1), then f = h+ g satisfies the condition (1.1). In other
words, we need to show that

<

(
zDq(Rm

q h(z))− zDq(Rm
q g(z))

(1− λ)z′ + λ(Rm
q f(z))

)
= <

(
A(z)

B(z)

)
≥ γ, (2.2)

where

A(z) = zDq(Rm
q h(z))− zDq(Rm

q g(z))

= z +
∞∑
n=2

[n]qΦq(n,m)anz
n −

∞∑
n=1

[n]qΦq(n,m)bnz
n ,

and

B(z) = (1− λ)z′ + λ(Rm
q f(z))

= z +
∞∑
n=2

λΦq(n,m)anz
n +

∞∑
n=1

λΦq(n,m)bnz
n .

Using the fact that < {w} ≥ γ if and only if |1− γ +w| ≥ |1 + γ −w|, it suffices
to show that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0. (2.3)
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Substituting for A(z) and B(z) in (2.3), we get

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

=
∣∣ (2− γ)z +

∞∑
n=2

[[n]q + (1− γ)λ]Φq(n,m)anz
n

−
∞∑
n=1

[[n]q − (1− γ)λ]Φq(n,m)bn z
n
∣∣

−
∣∣− γz +

∞∑
n=2

[[n]q − (1 + γ)λ]Φq(n,m)anz
n

−
∞∑
n=1

[[n]q + (1 + γ)λ]Φq(n,m)bnz
n
∣∣

≥ (2− γ)|z| −
∞∑
n=2

[[n]q + (1− γ)λ]Φq(n,m)|an||z|n

−
∞∑
n=1

[[n]q − (1− γ)λ]Φq(n,m)|bn| |z|n

−γ|z| −
∞∑
n=2

[[n]q − (1 + γ)λ]Φq(n,m)|an| |z|n

−
∞∑
n=1

[[n]q + (1 + γ)λ]Φq(n,m)|bn| |z|n

≥ 2(1− γ)|z|

(
2−

∞∑
n=1

[
[n]q − γλ

1− γ
|an|+

[n]q + γλ

1− γ
|bn|
]

Φq(n,m)|z|n−1

)

≥ 2(1− γ)

(
2−

∞∑
n=1

[
[n]q − γλ

1− γ
|an|+

[n]q + γλ

1− γ
|bn|
]

Φq(n,m)

)
.

The above expression is nonnegative by (2.1), and so f ∈ Hmq (λ, γ). �

The harmonic function

f(z) = z +
∞∑
n=2

1− γ
([n]q − γλ)Φq(n,m)

xnz
n +

∞∑
n=1

1− γ
([n]q + γλ)Φq(n,m)

yn(z)n, (2.4)

where
∞∑
n=2

|xn| +
∞∑
n=1

|yn| = 1, shows that the coefficient bound given by (2.1) is

sharp.

The functions of the form (2.4) are in Hm
q (λ, γ), because

∞∑
n=1

(
([n]q − γλ)Φq(n,m)

1− γ
|an|+

([n]q + γλ)Φq(n,m)

1− γ
|bn|
)

= 1 +
∞∑
n=2

|xn|+
∞∑
n=1

|yn| = 2.
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The necessary and sufficient coefficient conditions for the harmonic functions
f = h+ g to be in Hm

q (λ, γ) are given by the following theorem.

Theorem 2.2. For a1 = 1 and 0 ≤ γ < 1, we have f = h+ g ∈ Hm

q (λ, γ) if and
only if

∞∑
n=1

(
[n]q − γλ

1− γ
an +

[n]q + γλ

1− γ
bn

)
Φq(n,m) ≤ 2. (2.5)

Proof. Since Hm

q (λ, γ) ⊂ Hm
q (λ, γ), we need to prove the ”only if” part of the

theorem. In other words, for functions f of the form (1.2), we will show that if
the condition (2.2) holds, then the coefficients of the function f = h + g satisfy
the inequality (2.5). We note that the condition (2.2) is equivalent to

<

(1− γ)z −
∞∑
n=2

([n]q − γλ)Φq(n,m)anz
n −

∞∑
n=1

[[n]q + γλ]Φq(n,m)bnz
n

z −
∞∑
n=2

λΦq(n,m)anzn +
∞∑
n=1

λΦq(n,m)bnz
n

 ≥ 0.

The above required condition must hold for all values of z in U. Upon choosing
the values of z on the positive real axis where 0 ≤ z = r < 1,, we must have

(1− γ)−
∞∑
n=2

([n]q − γλ)Φq(n,m)anr
n−1 −

∞∑
n=1

([n]q + γλ)Φq(n,m)bnr
n−1

1−
∞∑
n=2

λΦq(n,m)anrn−1 +
∞∑
n=1

λΦq(n,m)bnrn−1

≥ 0. (2.6)

If the condition (2.5) does not hold, then the numerator in (2.6) is negative for r
sufficiently close to 1. Hence, there exist z0 = r0 in (0, 1) for which the quotient in

(2.6) is negative. This contradicts the required condition for f ∈ Hmq (λ, γ) and so the
proof is complete. �

The following theorem gives the distortion bounds for functions in Hm

q (λ, γ)

which yields a covering result for the class Hm

q (λ, γ).

Theorem 2.3. Let f ∈ Hm

q (λ, γ). Then for |z| = r < 1, we have

(1− b1)r− 1

Φq(2,m)

(
1− γ

[2]q − γλ
− 1 + γ

[2]q − γλ
b1

)
r2

≤ |f(z)|

≤ (1 + b1)r +
1

Φq(2,m)

(
1− γ

[2]q − γλ
− 1 + γ

[2]q − γλ
b1

)
r2.

Proof. We shall only prove the right hand inequality, since the proof for the left
hand inequality is similar to that given for the right hand side inequality. Taking
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the absolute value of f(z), we obtain

|f(z)| =

∣∣∣∣∣z +
∞∑
n=2

anz
n +

∞∑
n=1

bnz
n

∣∣∣∣∣
≤ (1 + b1)|z|+

∞∑
n=2

(an + bn)|z|n

≤ (1 + b1)r +
∞∑
n=2

(an + bn)r2

≤ (1 + b1)r +
(1− γ)

([2]q − γλ)Φq(2,m)

×
∞∑
n=2

(
([2]q − γλ)Φq(2,m)

(1− γ)
an +

([2]q − γλ)Φq(2,m)

(1− γ)
bn

)
r2

≤ (1 + b1)r +
(1− γ)1

([2]q − γλ)Φq(2,m)

(
1− 1 + γ

1− γ
b1

)
r2

≤ (1 + b1)r +
1

Φq(2,m)

(
1− γ

[2]q − γλ
− 1 + γ

[2]q − γλ
b1

)
r2.

�

As a consequence of Theorem 2.3, we obtain the following covering result.

Corollary 2.4. If f(z) ∈ Hm

q (λ, γ), then{
w : |w| < ([2]q − γλ)Φq(2,m)− (1− γ)

([2]q − γλ)Φq(2,m)
− ([2]q − γλ)Φq(2,m)− (1 + γ)

([2]q − γλ)Φq(2,m)
b1

}
⊂ f(U).

Proof. Using the left hand inequality of Theorem 2.3 and letting r → 1, it follows
that

(1− b1)− 1

Φq(2,m)

(
1− γ

[2]q − γλ
− 1 + γ

[2]q − γλ
b1

)
= (1− b1)− 1

Φq(2,m)([2]q − γλ)
[1− γ − (1 + γ)b1]

=
(1− b1)Φq(2,m)([2]q − γλ)− (1− γ) + (1 + γ)b1

Φq(2,m)([2]q − γλ)

=

(
([2]q − γλ)Φq(2,m)− (1− γ)

([2]q − γλ)Φq(2,m)
− ([2]q − γλ)Φq(2,m)− (1 + γ)

([2]q − γλ)Φq(2,m)
|b1|
)

⊂ f(U).

�

Next we determine the extreme points of closed convex hulls of Hm

q (λ, γ) de-

noted by clcoHm

q (λ, γ).
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Theorem 2.5. A function f(z) ∈ Hm

q (λ, γ) if and only if

f(z) =
∞∑
n=1

(Xnhn(z) + Yngn(z)) ,

where h1(z) = z, hn(z) = z− 1−γ
([n]q−γλ)Φq(n,m)z

n (n ≥ 2), gn(z) = z+ 1−γ
([n]q+γλ)Φq(n,m)z

n

(n ≥ 2),
∞∑
n=1

(Xn + Yn) = 1, Xn ≥ 0 and Yn ≥ 0. In particular, the extreme points

of Hm

q (λ, γ) are {hn} and {gn}.

Proof. First, we note that for f as in the theorem above, we may write

f(z) =
∞∑
n=1

(Xnhn(z) + Yngn(z))

=
∞∑
n=1

(Xn + Yn)z −
∞∑
n=2

1− γ
([n]q − γλ)Φq(n,m)

Xnz
n

+
∞∑
n=1

1− γ
([n]q + γλ)Φq(n,m)

Ynz
n.

Therefore,

∞∑
n=2

([n]q − γλ)Φq(n,m)

1− γ
|an|+

∞∑
n=1

([n]q + γλ)Φq(n,m)

1− γ
|bn|

=
∞∑
n=2

Xn +
∞∑
n=1

Yn = 1−X1 ≤ 1,

and so f(z) ∈ clcoHm

q (λ, γ).

Conversely, suppose that f(z) ∈ clcoHm

q (λ, γ). Set

Xn =
([n]q − γλ)Φq(n,m)

1− γ
|an| (0 ≤ Xn ≤ 1, n ≥ 2)

Yn =
([n]q + γλ)Φq(n,m)

1− γ
|bn| (0 ≤ Yn ≤ 1, n ≥ 1)
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and X1 = 1−
∞∑
n=2

Xn −
∞∑
n=1

Yn. Therefore f(z) can be rewritten as

f(z) = z −
∞∑
n=2

anz
n +

∞∑
n=1

bnz
n

= z −
∞∑
n=2

1− γ
([n]q − γλ)Φq(n,m)

Xnz
n +

∞∑
n=1

1− γ
([n]q − γλ)Φq(n,m)

Ynz
n

= z +
∞∑
n=2

(hn(z)− z)Xn +
∞∑
n=1

(gn(z)− z)Yn

= z{1−
∞∑
n=2

Xn −
∞∑
n=1

Yn}+
∞∑
n=2

hn(z)Xn +
∞∑
n=1

gn(z)Yn

=
∞∑
n=1

(Xnhn(z) + Yngn(z)),

as required. �

Finally, we show that Hm

q (λ, γ) is closed under convex combinations of its
members.

Theorem 2.6. The family Hm

q (λ, γ) is closed under convex combinations.

Proof. For i = 1, 2, . . . , suppose that fi ∈ H
m

q (λ, γ), where

fi(z) = z −
∞∑
n=2

ai,nz
n +

∞∑
n=2

bi,nz
n.

Then, by Theorem 2.2
∞∑
n=2

([n]q − γλ)Φq(n,m)

(1− γ)
ai,n +

∞∑
n=1

([n]q + γλ)Φq(n,m)

(1− γ)
bi,n ≤ 1.

For
∞∑
i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combinations of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑
n=2

(
∞∑
i=1

tiai,n

)
zn +

∞∑
n=1

(
∞∑
i=1

tibi,n

)
zn.

Using the inequality (2.5), we obtain

∞∑
n=2

([n]q − γλ)Φq(n,m)

1− γ

( ∞∑
i=1

tiai,n

)
+
∞∑
n=1

([n]q + γλ)Φq(n,m)

1− γ

( ∞∑
i=1

tibi,n

)

=

∞∑
i=1

ti

( ∞∑
n=2

([n]q − γλ)Φq(n,m)

1− γ
ai,n +

∞∑
n=1

([n]q + γλ)Φq(n,m)

1− γ
bi,n

)

≤
∞∑
i=1

ti = 1,
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and therefore
∞∑
i=1

tifi ∈ H
m
q (λ, γ). �
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