

Khayyam Journal of Mathematics

 emis.de/journals/KJM kjm-math.org
ON A NEW SUBCLASS OF M-FOLD SYMMETRIC BIUNIVALENT FUNCTIONS EQUIPPED WITH SUBORDINATE CONDITIONS

EMEKA MAZI ${ }^{1 *}$ AND ŞAHSENE ALTINKAYA ${ }^{2}$
Communicated by A.K. Mirmostafaee

Abstract

In this paper, we introduce a new subclass of biunivalent function class Σ in which both $f(z)$ and $f^{-1}(z)$ are m -fold symmetric analytic functions. For functions of the subclass introduced in this paper, we obtain the coefficient bounds for $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ and also study the Fekete-Szegö functional estimate for this class. Consequences of the results are also discussed.

1. Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in C:|z|<1\}$. Let S be the subclass of A consisting of functions, which are analytic and univalent in \mathbb{U}.

The Keobe one-quarter theorem [8] states that, the range of every function of the class S contains the disk $\{w:|w|<1 / 4\}$. Therefore, every $f \in S$ has an inverse function f^{-1} satisfying

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq 1 / 4\right)
$$

[^0]The inverse of $f(z)$ has a series expansion in some disc about the origin of the form

$$
\begin{equation*}
f^{-1}(w)=w+A_{2} w^{2}+A_{3} w^{3}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f(z)$, which is univalent in a neighborhood of the origin, and its inverse satisfy the condition $f\left(f^{-1}(w)\right)=w$
using (1.2) yields

$$
\begin{equation*}
w=f^{-1}(w)+a_{2}\left(f^{-1}(w)\right)^{2}+a_{3}\left(f^{-1}(w)\right)^{3}+\cdots \tag{1.3}
\end{equation*}
$$

and now using (1.3), we get the following result:

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.4}
\end{equation*}
$$

An analytic function $f(z)$ is said to be biunivalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. The class of analytic biunivalent function in \mathbb{U} is denoted by Σ.
For a brief history and interesting examples of functions in the class Σ; see the pioneering work on this subject by Srivastava et al. [18], which has apparently revived the study of biunivalent functions in recent years. From the work of Srivastava et al. [18], we choose to recall the following examples of functions in the class Σ :

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

and so on. However, the familiar Koebe function is not a member of the biunivalent function class Σ. Such other common examples of functions in S as

$$
z-\frac{z^{2}}{2} \quad \text { and } \quad \frac{z}{1-z^{2}}
$$

are also not members of Σ (see [18]).
If the function f and g are analytic in \mathbb{U}, then f is said to be subordinate to g, written as

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

if there exists a Schwarz function $w(z)$, analytic in \mathbb{U}, with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{U})
$$

Lewin [11] studied the class of biunivalent functions, obtaining the bound 1.51 for the modulus of the second coefficient $\left|a_{2}\right|$. Subsequently, Brannan and Clunie [6] conjectured that $\left|a_{2}\right| \leqq \sqrt{2}$ for $f \in \Sigma$. Later on, Netanyahu [14] showed that $\max \left|a_{2}\right|=\frac{4}{3}$ if $f(z) \in \Sigma$. Brannan and Taha [7] introduced certain subclasses of the biunivalent function class Σ similar to the familiar subclasses $S^{\star}(\beta)$ and $K(\beta)$ of starlike and convex functions of order $\beta(0 \leqq \beta<1)$ in \mathbb{U}, respectively (see [14]). The classes $S_{\Sigma}^{\star}(\beta)$ and $K_{\Sigma}(\beta)$ of bistarlike functions of order β in \mathbb{U} and biconvex functions of order β in \mathbb{U}, corresponding to the function classes $S^{\star}(\beta)$ and $K(\beta)$, were also introduced analogously. For each of the function classes $S_{\Sigma}^{\star}(\beta)$ and $K_{\Sigma}(\beta)$, they found nonsharp estimates for the initial coefficients.

Recently, motivated substantially by the aforementioned pioneering work on this subject by Srivastava et al. [18], many authors investigated the coefficient bounds for various subclasses of biunivalent functions (see, for example, [1], [2], [3], [4], [10], [13], [15], [20], [22], and [23]). Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$ for $n \geqq 4$. The coefficient estimate problem for each of the coefficients

$$
\left|a_{n}\right| \quad(n \in \mathbb{N} \backslash\{1,2\}, \mathbb{N}=\{1,2,3, \ldots\})
$$

is still an open problem.
For each function f in S, the function h given by

$$
h(z)=\sqrt[m]{f\left(z^{m}\right)} \quad(m \in \mathbb{N})
$$

is univalent and maps the unit disk \mathbb{U} into a region with m-fold symmetry. A function is said to be m-fold symmetric (see [16]) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(m \in \mathbb{N}, z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

We denote the class of m-fold symmetric univalent functions by S_{m}, which are normalized by the above series expansion (1.5). In fact the functions in the class S are one fold symmetric (that is $m=1$). Analogous to the concept of m -fold symmetric univalent functions, one can think of the concept of m-fold symmetric biunivalent function in a natural way. Each function f in the class Σ generates an m-fold symmetric biunivalent function for each positive integer m. The normalized form of f is given as (1.5) and f^{-1} is given by as follows:

$$
\begin{align*}
g(w)= & w-a_{m+1} z^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots, \tag{1.6}
\end{align*}
$$

where $f^{-1}=g$. We denote the class of m -fold symmetric biunivalent functions by Σ_{m}. For $m=1$, the formula (1.6) coincides with the function (1.4) of the class Σ. Some examples of m-fold symmetric biunivalent functions are given here below:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}}, \quad\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}, \quad\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)^{\frac{1}{m}}\right]
$$

Here in this paper, we also denote P the class of analytic functions of the form

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots,
$$

such that

$$
R(p(z))>0 \quad(z \in \mathbb{U})
$$

In view of the work of Pommerenke [16] the m-fold symmetric function p in the class P is of the form

$$
\begin{equation*}
p(z)=1+c_{m} z^{m}+c_{2 m} z^{2 m}+c_{3 m} z^{3 m}+\cdots \tag{1.7}
\end{equation*}
$$

Let ϕ be an analytic function with positive real part in \mathbb{U}, with $\phi(0)=1$ and $\phi^{\prime}(0)>0$. Also, let $\phi(\mathbb{U})$ be starlike with respect to one and symmetric with respect to the axis. Thus, ϕ has the Taylor series expansion

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots \quad\left(B_{1}>0\right) . \tag{1.8}
\end{equation*}
$$

Suppose that $u(z)$ and $v(w)$ are analytic in the unit disk \mathbb{U} with $u(0)=v(0)=$ $0,|u(z)|<1$, and $|v(w)|<1$.
We suppose that

$$
\begin{equation*}
u(z)=b_{m} z^{m}+b_{2 m} z^{2 m}+b_{3 m} z^{3 m}+\cdots \quad(|z|<1) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=c_{m} z^{m}+c_{2 m} z^{2 m}+c_{3 m} z^{3 m}+\cdots \quad(|w|<1) . \tag{1.10}
\end{equation*}
$$

It is well known that

$$
\begin{equation*}
\left|b_{m}\right| \leq 1,\left|b_{2 m}\right| \leq 1-\left|b_{m}\right|^{2},\left|c_{m}\right| \leq 1,\left|c_{2 m}\right| \leq 1-\left|c_{m}\right|^{2} \tag{1.11}
\end{equation*}
$$

By simple computations

$$
\begin{equation*}
\phi(u(z))=1+B_{1} b_{m} z^{m}+\left(B_{1} b_{2 m}+B_{2} b_{m}^{2}\right) z^{2 m}+\cdots \quad(|z|<1) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(u(z))=1+B_{1} c_{m} z^{m}+\left(B_{1} c_{2 m}+B_{2} c_{m}^{2}\right) z^{2 m}+\cdots \quad(|w|<1) \tag{1.13}
\end{equation*}
$$

Babalola [5] defined the class $L_{\lambda}(\beta)$ of λ-pseudo-starlike functions of order β as below.

Definition 1.1. Let $f \in A$; suppose that $0 \leq \beta<1$ and that $\lambda \geq 1$ is real. Then $f(z) \in L_{\lambda}(\beta)$ of λ-pseudo-starlike functions of order β in the unit disk if and only if

$$
\operatorname{Re} \frac{z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)}>\beta
$$

Babalola [5] proved that, all pseudo-starlike functions are Bazilevic of type $\left(1-\frac{1}{\lambda}\right)$ order $\beta^{\frac{1}{\lambda}}$ and univalent in open unit disk \mathbb{U}.

We now introduce the following subclass of m-fold symmetric biunivalent function class Σ_{m}.

Definition 1.2. A function $f \in \Sigma_{m}$ said to be in the class $S_{\Sigma, m}^{\lambda}(\phi)$, if the following subordination conditions hold:

$$
\begin{equation*}
\frac{z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)} \prec \phi(z) \tag{1.14}
\end{equation*}
$$

and

$$
\frac{w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)} \prec \phi(w)
$$

where $g=f^{-1}$ and $\lambda \geq 1$.

For various special choices of the function ϕ and for the case when $m=1$, our function class $S_{\Sigma, m}^{\lambda}(\phi)$ reduces to the following known classes:
(1) Taking $m=1$, the function class is given by

$$
S_{\Sigma, m}^{\lambda}(\phi) \equiv S_{\Sigma, 1}^{\lambda}(\phi) \equiv S_{\Sigma}^{\lambda}(\phi)
$$

(2) For $m=1$ and $\phi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}(0<\alpha \leq 1)$, the function class given by

$$
S_{\Sigma, m}^{\lambda}(\phi) \equiv S_{\Sigma, 1}^{\lambda}\left(\left(\frac{1+z}{1-z}\right)^{\alpha}\right)
$$

was studied by Joshi et al. [10].
(3) For $m=1$ and $\phi(z)=\left(\frac{1+(1-2 \beta) z}{1-z}\right)(0 \leq \beta<1)$, the function class given by

$$
S_{\Sigma, m}^{\lambda}(\phi) \equiv S_{\Sigma, 1}^{\lambda}\left(\frac{1+(1-2 \beta) z}{1-z}\right)
$$

was studied by Joshi et al. [10].
Motivated by the work of Ma and Minda [12] and Srivastava et al. [19], we introduce a new subclass of m-fold symmetric biunivalent functions. We obtain the coefficients bounds for $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ and also the Fekete-Szegö functional estimate for the subclass. The results improve the earlier results of Joshi et al. [10].

2. Coefficient estimates

We begin this section by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $S_{\Sigma, m}^{\lambda}(\phi)$ proposed by Definition 1.2.

Theorem 2.1. Let the function f given by (1.5) be in the class $S_{\Sigma, m}^{\lambda}(\phi)$. Then

$$
\begin{align*}
& \left|a_{m+1}\right| \leq \frac{B_{1} \sqrt{2 B_{1}}}{\sqrt{2(\lambda m+\lambda-1)^{2} B_{1}+\left|\left(m^{2} \lambda^{2}+\lambda m^{2}+2 m \lambda^{2}-\lambda m+\lambda^{2}-2 \lambda-m+1\right) B_{1}^{2}-2(\lambda m+\lambda-1)^{2} B_{2}\right|}}\left(\begin{array}{ll}
(2.1)
\end{array}\right. \\
& \left|a_{2 m+1}\right| \leq \tag{2.1}\\
& \begin{cases}\frac{B_{1}}{|2 m \lambda+\lambda-1|}, & B_{1}<\frac{2(\lambda m+\lambda-1)^{2}}{(m+1)|2 m \lambda+\lambda-1|}, \\
\left((m+1)-\frac{2(m \lambda+\lambda-1)^{2}}{|2 m \lambda+\lambda-1| B_{1}}\right) \frac{B_{1}^{3}}{2(m \lambda+\lambda-1)^{2} B_{1}+\left|\left(m^{2} \lambda^{2}+m^{2} \lambda+2 m \lambda^{2}-m \lambda+\lambda^{2}-2 \lambda-m+1\right) B_{1}^{2}-2(m \lambda+\lambda-1)^{2} B_{2}\right|} \\
+\frac{B_{1}}{|2 \lambda m+\lambda-1|}, & B_{1} \geq \frac{2(\lambda m+\lambda-1)^{2}}{(m+1)|2 m \lambda+\lambda| \mid} .\end{cases} \tag{2.2}
\end{align*}
$$

Proof. Let $f \in S_{\Sigma, m}^{\lambda}$ and $g=f^{-1}$. Then there are analysis functions $u: \mathbb{U} \rightarrow \mathbb{U}$ and $v: \mathbb{U} \rightarrow \mathbb{U}$, with

$$
u(0)=v(0)=0,
$$

satisfying the following conditions:

$$
\begin{equation*}
\frac{z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)}=\phi(u(z)) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)}=\phi(v(w)) \tag{2.4}
\end{equation*}
$$

Comparing the corresponding coefficients of (2.3) and (2.4) yields

$$
\begin{gather*}
(m \lambda+\lambda-1) a_{m+1}=B_{1} b_{m} \tag{2.5}\\
{\left[\lambda(m+1)\left(\frac{(\lambda-1)(m+1)}{2}-1\right)+1\right] a_{m+1}^{2}+(2 m \lambda+\lambda-1) a_{2 m+1}=B_{1} b_{2 m}+B_{2} b_{m}^{2},} \tag{2.6}\\
-(m \lambda+\lambda-1) a_{m+1}=B_{1} c_{m}, \tag{2.7}
\end{gather*}
$$

and

$$
\begin{equation*}
\left[\lambda(m+1)\left(\frac{(\lambda-1)(m+1)}{2}+2 m\right)-m\right] a_{m+1}^{2}-(2 m \lambda+\lambda-1) a_{2 m+1}=B_{1} c_{2 m}+B_{2} c_{m}^{2} \tag{2.8}
\end{equation*}
$$

It implies from (2.5) and (2.7) that

$$
\begin{equation*}
c_{m}=-b_{m} . \tag{2.9}
\end{equation*}
$$

By adding (2.6) and (2.8), further computation using (2.5) and (2.9) lead to

$$
\begin{equation*}
\left[\left(m^{2} \lambda^{2}+\lambda m^{2}+2 m \lambda^{2}-\lambda m+\lambda^{2}-2 \lambda-m+1\right) B_{1}^{2}-2(\lambda m+\lambda-1)^{2} B_{2}\right] a_{m+1}^{2}=B_{1}^{3}\left(b_{2 m}+c_{2 m}\right) . \tag{2.10}
\end{equation*}
$$

Using (2.9) and (2.10), together with (1.11), yield
$\left|\left(m^{2} \lambda^{2}+\lambda m^{2}+2 m \lambda^{2}-\lambda m+\lambda^{2}-2 \lambda-m+1\right) B_{1}^{2}-2(\lambda m+\lambda-1)^{2} B_{2} \| a_{m+1}\right|^{2} \leq 2 B_{1}^{3}\left(1-\left|b_{m}\right|^{2}\right)$.
Equations (2.5) and (2.11) give the desired estimate on $\left|a_{m+1}\right|$ as asserted in (2.1). By subtracting (2.8) from (2.6), we obtain

$$
\begin{equation*}
2(2 m \lambda+\lambda-1) a_{2 m+1}=(m+1)(2 m \lambda+\lambda-1) a_{m+1}^{2}+B_{1}\left(b_{2 m}-c_{2 m}\right) . \tag{2.12}
\end{equation*}
$$

From (1.11), (2.5), (2.8), and (2.12), it follows that

$$
\begin{aligned}
\left|a_{2 m+1}\right| & \leq \frac{(m+1)}{2}\left|a_{m+1}\right|^{2}+\frac{B_{1}}{2|2 m \lambda+\lambda-1|}\left(\left|b_{2 m}\right|+\left|c_{2 m}\right|\right) \\
& \leq \frac{(m+1)}{2}\left|a_{m+1}\right|^{2}+\frac{B_{1}}{|2 m \lambda+\lambda-1|}\left(1-\left|b_{m}\right|^{2}\right) \\
& =\left(\frac{m+1}{2}-\frac{(m \lambda+\lambda-1)^{2}}{|2 m \lambda+\lambda-1| B_{1}}\right)\left|a_{m+1}\right|^{2}+\frac{B_{1}}{|2 m \lambda+\lambda-1|}
\end{aligned}
$$

which implies the assertion (2.2).
For the case of one-fold symmetric function, Theorem 2.1 reduces to Corollary 2.2 below.

Corollary 2.2. Let the function f given by (1.5) be in the class $S_{\Sigma}^{\lambda}(\phi)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{(2 \lambda-1)\left[(2 \lambda-1) B_{1}+\left|\lambda B_{1}^{2}-(2 \lambda-1) B_{2}\right|\right]}} \tag{2.13}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{3 \lambda-1}, & B_{1}<\frac{(2 \lambda-1)^{2}}{3 \lambda-1} \tag{2.14}\\ \left(1-\frac{(2 \lambda-1)^{2}}{(3 \lambda-1) B_{1}}\right) \frac{B_{1}^{3}}{(2 \lambda-1)^{2} B_{1}+\left|\left(2 \lambda^{2}-\lambda\right) B_{1}^{2}-(2 \lambda-1)^{2} B_{2}\right|}+\frac{B_{1}}{3 \lambda-1}, & B_{1} \geq \frac{(2 \lambda-1)^{2}}{3 \lambda-1}\end{cases}
$$

Remark 2.3. For $f \in S_{\Sigma}^{\lambda}(\phi)$, the function ϕ is given by

$$
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\cdots \quad(0<\alpha \leq 1)
$$

and so $B_{1}=2 \alpha$ and $B_{2}=2 \alpha^{2}$. Hence Corollary 2.2 reduces to an improved results of Joshi et al. [10].
On the other hand when

$$
\phi(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots \quad(0 \leq \beta<1)
$$

$B_{1}=B_{2}=2(1-\beta)$, and thus Corollary 2.2 reduces to the improved results of Joshi et al. [10].

For the case of one-fold symmetric functions with $\lambda=1$, the class reduces to the strongly starlike functions; the function ϕ is given by

$$
\begin{equation*}
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z+\cdots \quad(0<\alpha \leq 1) \tag{2.15}
\end{equation*}
$$

which gives

$$
B_{1}=2 \alpha \text { and } B_{2}=2 \alpha^{2}
$$

Hence, Theorem 2.1 gives the following corollary.
Corollary 2.4. Let the function f given by (1.5) be in the class $S_{\Sigma, 1}^{1}\left(\left(\frac{1+z}{1-z}\right)^{\alpha}\right)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{1+\alpha}} \tag{2.16}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\alpha, & 0<\alpha \leq \frac{1}{4} \tag{2.17}\\ \frac{5 \alpha^{2}}{1+\alpha}, & \frac{1}{4}<\alpha \leq 1\end{cases}
$$

For the case of one-fold symmetric functions with $\lambda=1$, the class reduces to the strongly starlike functions, and the function ϕ is given by

$$
\phi(z)=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots \quad(0 \leq \beta<1)
$$

so that

$$
B_{1}=B_{2}=2(1-\beta) .
$$

Corollary 2.5. Let the function f given by (1.5) be in the class $S_{\Sigma, 1}^{1}\left(\frac{1+(1-2 \beta) z}{1-z}\right)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2(1-\beta)}{\sqrt{1+|1-2 \beta|}} \tag{2.18}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{5-6 \beta}{2}, & 0 \leq \beta<\frac{3}{4} \tag{2.19}\\ 1-\beta, & \frac{3}{4} \leq \beta<1\end{cases}
$$

3. Fekete-Szegö problem

The classical Fekete-Szegö inequality, presented by means of Loewner's method, for the coefficients of $f \in S$, is

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 1+2 \exp (-2 \mu /(1-\mu)) \text { for } \mu \in[0,1)
$$

As $\mu \rightarrow 1^{-}$, we have the elementary inequality $\left|a_{3}-a_{2}^{2}\right| \leq 1$. Moreover, the coefficient functional

$$
\Phi_{\mu}(f)=a_{3}-\mu a_{2}^{2}
$$

on the normalized analytic functions f in the unit disk \mathbb{U} plays an important role in function theory. The problem of maximizing the absolute value of the functional $\Phi_{\mu}(f)$ is called the Fekete-Szegö problem, see [9].

In this section, we aim to provide Fekete-Szegö inequalities for functions in the class $S_{\Sigma, m}^{\lambda}(\phi)$. These inequalities are given in the following theorem.
Theorem 3.1. Let the function $f(z)$, given by (1.5), be in the class $S_{\Sigma, m}^{\lambda}(\phi)$. Then

$$
\left|a_{2 m+1}-\mu a_{m+1}^{2}\right| \leq \begin{cases}\frac{B_{1}}{|2 m \lambda+\lambda-1|}, & 0 \leq|h(\mu)|<\frac{1}{2|2 m \lambda+\lambda-1|} \tag{3.1}\\ 2 B_{1}|h(\mu)|, & |h(\mu)| \geq \frac{1}{|2 m \lambda+\lambda-1|},\end{cases}
$$

where

$$
h(\mu)=\frac{B_{1}^{2}(m+1-2 \mu)}{2\left[\left(m^{2} \lambda^{2}+m^{2} \lambda+2 m \lambda^{2}-m \lambda+\lambda^{2}-2 \lambda-m+1\right) B_{1}^{2}-2(m \lambda+\lambda-1)^{2} B_{2}\right]} .
$$

Proof. From the equation (2.10), we get

$$
\begin{equation*}
a_{m+1}^{2}=\frac{B_{1}^{3}\left(b_{2 m}+c_{2 m}\right)}{\left(m^{2} \lambda^{2}+m^{2} \lambda+2 m \lambda^{2}-m \lambda+\lambda^{2}-2 \lambda-m+1\right) B_{1}^{2}-2(m \lambda+\lambda-1)^{2} B_{2}} . \tag{3.2}
\end{equation*}
$$

By subtracting (2.6) from (2.8), we get

$$
\begin{equation*}
a_{2 m+1}=\frac{(m+1)}{2} a_{m+1}^{2}+\frac{B_{1}\left(b_{2 m}-c_{2 m}\right)}{2(2 m \lambda+\lambda-1)} . \tag{3.3}
\end{equation*}
$$

From equations (3.2) and (3.3), we obtain
$a_{2 m+1}-\mu a_{m+1}^{2}=B_{1}\left[\left(h(\mu)+\frac{1}{2(2 m \lambda+\lambda-1)}\right) b_{2 m}+\left(h(\mu)-\frac{1}{2(2 m \lambda+\lambda-1)}\right) c_{2 m}\right]$,
where
$h(\mu)=\frac{B_{1}^{2}(m+1-2 \mu)}{2\left[\left(m^{2} \lambda^{2}+m^{2} \lambda+2 m \lambda^{2}-m \lambda+\lambda^{2}-2 \lambda-m+1\right) B_{1}^{2}-2(m \lambda+\lambda-1)^{2} B_{2}\right]}$.
All B_{i} are real and $B_{1}>0$, which implies the assertion equation (3.1).
For the case of one-fold symmetric functions, Theorem 3.1 reduces to the following Corollary 3.2.
Corollary 3.2. Let the function f given by (1.5) be in the class $S_{\Sigma, 1}^{\lambda}(\phi)$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{3 \lambda-1}, & 0 \leq|h(\mu)|<\frac{1}{2(3 \lambda-1)} \\ 2 B_{1} \mid h(\mu), & |h(\mu)| \geq \frac{1}{2(3 \lambda-1)}\end{cases}
$$

where

$$
h(\mu)=\frac{B_{1}^{2}(1-\mu)}{2(2 \lambda-1)\left[\lambda B_{1}^{2}-(2 \lambda-1) B_{2}\right]} .
$$

Taking $\mu=1$ and $\mu=0$ in Theorem 3.1, we have the following corollaries.
Corollary 3.3. Let the function f given by (1.5) be in the class $S_{\Sigma, m}^{\lambda}(\phi)$. Then

$$
\begin{aligned}
& \left|a_{2 m+1}-a_{m+1}^{2}\right| \leq \\
& \left\{\begin{array}{l}
\frac{B_{1}}{|2 m \lambda+\lambda-1|}, \\
\frac{B_{1}^{3}(m-1)}{\left|\left(m^{2} \lambda^{2}+m^{2} \lambda+2 m \lambda^{2}-m \lambda+\lambda^{2}-2 \lambda-m+1\right) B_{1}^{2}-2(m \lambda+\lambda-1)^{2} B_{2}\right|}, \\
\frac{B_{2}}{B_{1}^{2}} \in\left(\rho_{1}, \frac{m^{2} \lambda^{2}+m^{2} \lambda+2 m \lambda^{2}-m \lambda+\lambda^{2}-2 \lambda-m+1}{2(m \lambda+\lambda-1)^{2}}\right) \cup\left(\frac{m^{2} \lambda^{2}+m^{2} \lambda+2 m \lambda^{2}-m \lambda+\lambda^{2}-2 \lambda-m+1}{2(m \lambda+\lambda-1)^{2}}, \rho_{2}\right),
\end{array}\right.
\end{aligned}
$$

where

$$
\rho_{1}=\frac{m^{2} \lambda^{2}-m^{2} \lambda+2 m \lambda^{2}+\lambda^{2}-\lambda}{2(m \lambda+\lambda-1)^{2}}
$$

and

$$
\rho_{2}=\frac{m^{2} \lambda^{2}+3 m^{2} \lambda+2 m \lambda^{2}-2 m \lambda+\lambda^{2}-3 \lambda-2 m+2}{2(m \lambda+\lambda-1)^{2}} .
$$

For the case of one-fold symmetric functions, Corollary 3.3 reduces to the following corollary.
Corollary 3.4. Let the function f given by (1.5) be in the class $S_{\Sigma, 1}^{\lambda}(\phi)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{B_{1}}{3 \lambda-1}
$$

Also, letting $\lambda=1$, we obtain

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{B_{1}}{2}
$$

Corollary 3.5. Let the function f given by (1.5) be in the class $S_{\Sigma, m}^{\lambda}(\phi)$. Then

$$
\begin{aligned}
& \left|a_{2 m+1}\right| \leq \\
& \left\{\begin{array}{l}
\frac{B_{1}}{|2 m \lambda+\lambda-1|}, \\
\frac{B_{1}^{3}(m+1)}{\left|\left(m^{2} \lambda^{2}+m^{2} \lambda+2 m \lambda^{2}-m \lambda+\lambda^{2}-2 \lambda-m+1\right) B_{1}^{2}-2(m \lambda+\lambda-1)^{2} B_{2}\right|}, \\
\frac{B_{2}}{B_{1}^{2}} \in\left(-\infty, \sigma_{1}\right) \cup\left(\sigma_{2}, \infty\right), \\
\left.B_{1}, \frac{m^{2} \lambda^{2}+m^{2} \lambda+2 m \lambda^{2}-m \lambda+\lambda^{2}-2 \lambda-m+1}{2(m \lambda+\lambda-1)^{2}}\right) \cup\left(\frac{m^{2} \lambda^{2}+m^{2} \lambda+2 m \lambda^{2}-m \lambda+\lambda^{2}-2 \lambda-m+1}{2(m \lambda+\lambda-1)^{2}}, \sigma_{2}\right),
\end{array}\right.
\end{aligned}
$$

where

$$
\sigma_{1}=\frac{m^{2} \lambda^{2}-m^{2} \lambda+2 m \lambda^{2}-4 m \lambda+\lambda^{2}-3 \lambda+2}{2(m \lambda+\lambda-1)^{2}}
$$

and

$$
\sigma_{2}=\frac{m^{2} \lambda^{2}+3 m^{2} \lambda+2 m \lambda^{2}+2 m \lambda+\lambda^{2}+\lambda-2 m}{2(m \lambda+\lambda-1)^{2}} .
$$

Corollary 3.6. Let the function f given by (1.5) be in the class $S_{\Sigma, 1}^{\lambda}(\phi)$. Then

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{3 \lambda-1}, & \frac{B_{2}}{B_{1}^{2}} \in\left(-\infty, \frac{2 \lambda^{2}-4 \lambda+1}{(2 \lambda-1)^{2}}\right) \cup\left(\frac{2 \lambda^{2}+2 \lambda-1}{(2 \lambda-1)^{2}}, \infty\right) \\ \frac{B_{1}^{3}}{(2 \lambda-1)\left[\lambda B_{1}^{2}-(2 \lambda-1) B_{2}\right]}, & \frac{B_{2}}{B_{1}^{2}} \in\left(\frac{2 \lambda^{2}-4 \lambda+1}{(2 \lambda-1)^{2}}, \frac{\lambda}{2 \lambda-1}\right) \cup\left(\frac{\lambda}{2 \lambda-1}, \frac{2 \lambda^{2}+2 \lambda-1}{(2 \lambda-1)^{2}}\right)\end{cases}
$$

For the cases of one-fold symmetric functions and $\lambda=1$, Corollary 3.6 reduces to the following corollary.
Corollary 3.7 (see [21]). Let the function f given by (1.5) be in the class $S_{\Sigma, 1}^{1}(\phi)$. Then

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{2}, & \frac{B_{2}}{B_{1}^{2}} \in(-\infty,-1) \cup(3, \infty) \\ \frac{B_{1}^{3}}{B_{1}^{2}-B_{2}}, & \frac{B_{2}}{B_{1}^{2}} \in(-1,1) \cup(1,3)\end{cases}
$$

References

1. A. Akgül, On the coefficient estimates of analytic and bi-univalent m-fold symmetric functions, Mathematica Aeterna, 7 (2017), no. 3, 253-260.
2. Ş. Altınkaya and S. Yalçın, Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, J. Math., 2015 (2015), 5 pages.
3. Ş. Altınkaya and S. Yalçın, Coefficient bounds for two new subclasses of m-fold symmetric bi-univalent functions, Serdica Math. J., 42 (2016), no. 2, 175-186.
4. Ş. Altınkaya and S. Yalçın, On some subclasses of m-fold symmetric bi-univalent functions, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 67 (2018), no. 1, 29-36.
5. K.O. Babalola, On λ-pseudo-starlike functions, J. Class. Anal., 3 (2013), no. 2, 137-147.
6. D.A. Brannan and J.G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, London-New York, 1980.
7. D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math., 31 (1986), no. 2, 70-77.
8. P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, 1983.
9. M. Fekete and G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. London Math. Soc., s1-8 (1933), no. 2, 85-89.
10. S. Joshi, S. Joshi, and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egypt. Math. Soc., 24 (2016), no. 4, 522-525.
11. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), no. 1, 63-68.
12. W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin; June 19-23, 1992) (Zhong Li, Fuyao Ren, Lo Yang and Shunyan Zhang, Editors), Conference Proceedings and Lecture Notes in Analysis, Vol. I, International Press, Cambridge, Massachusetts, 1994, pp. 157169.
13. G. Murugusundaramoorthy, N. Magesh, and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abs. Appl. Anal., 2013 (2013) Article ID 573017, 1-3.
14. E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. Anal., 32 (1969), no. 2, 100-112.
15. S.O. Olatunji and P.T. Ajai, On subclasses of bi-univalent functions of Bazilevic type involving linear and Salagean operator, Internat. J. Pure Appl. Math., 92 (2014), no. 5, 645-656.
16. Ch. Pommerenke, On the coefficients of close-to-convex functions, Michigan. Math. J., 9 (1962), no. 3, 259-269.
17. K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), no. 1, 72-75.
18. H.M. Srivastava, A.K. Mishra, and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23 (2010), no. 10, 1188-1192.
19. H.M. Srivastava, S. Sivasubramanian, and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7 (2014), no. 2, 1-10.
20. T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
21. H. Tang, H.M. Srivastava, S. Sivasubramanian, and P. Gurusamy, The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal., 10 (2016), no. 4, 1063-1092.
22. Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990-994.
23. Q.-H. Xu, H.-G. Xiao, and H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461-11465.
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Ilorin, NigeRIA

E-mail address: emekmazi21@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Science, Uludag University, 16059, Bursa, Turkey.

E-mail address: sahsene@uludag.edu.tr

[^0]: Date: Received: 18 January 2018; Revised: 27 May 2018; Accepted: 5 June 2018.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.
 Key words and phrases. Biunivalent functions, coefficient bounds, pseudo-starlike functions, Fekete-Szegö functional estimates, Taylor-Maclaurin coefficients, subordination.

