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Abstract. In this paper, we first prove a few comparison results between two
proper weak regular splittings which are useful in getting the iterative solution
of a large class of rectangular (square singular) linear system of equations
Ax = b, in a faster way. We then derive convergence and comparison results
for proper weak regular multisplittings.

1. Introduction

Berman and Plemmons [3] introduced the notion of proper splitting for rect-
angular/square singular matrices in order to find the least squares solution of
minimum norm of a rectangular system of linear equations of the form

Ax = b, (1.1)

where A ∈ Rm×n and b ∈ Rm, which we recall next. A splitting A = U − V of
A ∈ Rm×n is called a proper splitting if R(U) = R(A) and N(U) = N(A), where
R(A) and N(A) denote the range space and the null space of A, respectively.
Then, the same authors proved that the iterative scheme:

xk+1 = U †V xk + U †b, k = 0, 1, 2, . . . (1.2)

converges to A†b, the least squares solution of minimum norm for any initial vec-
tor x0 if and only if the spectral radius of U †V is less than 1 (see Corollary 1,
[3]). The above iterative scheme is said to be convergent if the spectral radius
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of the iteration matrix U †V is strictly less than 1. The advantage of the iter-
ative technique for solving the rectangular system of linear equations (Ax = b)
is that it avoids the use of the normal system ATAx = AT b, where ATA is fre-
quently ill-conditioned and influenced greatly by roundoff errors (see [12]). Such
systems appear in deconvolution problems with a smooth kernel. Square singular
linear systems also appear in problems like the finite difference representation of
Neumann problems.

The authors of [3] obtained several convergence criteria for (1.2). In the re-
cent years, several convergence and comparison results for different subclasses
of proper splittings have been proved by many authors such as Baliarsingh and
Mishra [1], Climent et al. [6], Jena et al. [13], Mishra [15]. To get faster con-
vergence, Climent et al. [8] introduced the notion of proper multisplittings and
obtained convergence criteria by extending the work of O’leary and White [16]
to rectangular matrices. This article further continues to investigate the com-
parisons of the rate of convergence of two iterative schemes in order to get the
desired solution in less time.

The paper is organized as follows. The next section contains notation, defini-
tions and preliminary tools. In Section 3, we prove our main results. First we
prove a couple of comparison results between two proper weak regular splittings
and then we discuss a few applications of theory of proper weak regular splittings
to multisplitting theory of rectangular matrices.

2. Preliminary notions and results

The notation Rm×n represents the set of all real matrices of order m× n. We
denote the transpose of a matrix A ∈ Rm×n by AT . Let L and M be com-
plementary subspaces of Rn, and PL,M be a projection onto L along M . Then
PL,MA = A if and only if R(A) ⊆ L, and APL,M = A if and only if N(A) ⊇ M .
In the case of L ⊥ M , PL,M will be denoted by PL for notational simplicity.
The spectral radius of a matrix A ∈ Rn×n is denoted by ρ(A), is defined by
ρ(A) = max

1≤i≤n
|λi|, where λ1, λ2, . . . , λn are the eigenvalues of A. Let A and B be

two matrices of appropriate order such that the products AB and BA are defined.
Then ρ(AB) = ρ(BA). Let A ∈ Rm×n, by A ≥ 0 we denote the matrix whose
entries are non-negative. Let B,C ∈ Rm×n. We write B ≥ C if B − C ≥ 0.
The same notation and nomenclature are also used for vectors. For A ∈ Rm×n,
the unique matrix Z ∈ Rn×m satisfying the following four equations known as
Penrose equations: AZA = A, ZAZ = Z, (AZ)T = AZ and (ZA)T = ZA
is called the Moore-Penrose inverse of A. It always exists, and is denoted
by A†. The following properties of A† will be frequently used in this paper:
R(AT ) = R(A†); N(AT ) = N(A†); AA† = PR(A) and A†A = PR(AT ). A matrix is
called semimonotone if A has the non-negative Moore-Penrose inverse. We refer
to [2] for more detail. Similarly, a square matrix A is called monotone if A−1

exists and A−1 ≥ 0 (see [9]).
We next turn our attention to results related to proper splittings.The first one

says if A = U−V is a proper splitting of A ∈ Rm×n, then A = U(I−U †V ), I−U †V
is invertible and A† = (I−U †V )−1U †. This is proved in [3], Theorem 1. Similarly,
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Climent and Perea [6] proved that A = (I −V U †)U and A† = U †(I −V U †)−1 for
a proper splitting A = U − V .

For all proper splittings, the iteration scheme (1.2) may not converge. So,
different convergence conditions are obtained for different subclasses of proper
splittings by several authors starting with Berman and Plemmons [3]. We first
collect below three such subclasses and then convergence criteria for the same
subclasses.

Definition 2.1. A proper splitting A = U − V of A ∈ Rm×n is called
(i) a proper regular splitting if U † ≥ 0 and V ≥ 0. ([13])
(ii) a proper weak regular splitting of type I if U † ≥ 0 and U †V ≥ 0. ([6])
(iii) a proper weak regular splitting of type II if U † ≥ 0 and V U † ≥ 0. ([6])

Next one combines [3, Corollary 4] and [10, Theorem 3.7], and contains con-
vergence criteria for both the above subclasses.

Theorem 2.2. Let A = U − V be a proper weak regular splitting of either type I
or type II of A ∈ Rm×n. Then, A is semimonotone if and only if ρ(U †V ) < 1.

3. Main Results

This section have two parts. In the first part, we reprove a result by dropping
one assumption and providing a complete new proof. We then present another
comparison result. In the second part, we discuss theory of proper multisplittings.

3.1. Comparison Results. Comparison of the spectral radii of two proper split-
tings are useful for improving the speed of the iteration scheme (1.2). In this
direction, several comparison results have been introduced in the literature both
in rectangular and square nonsingular matrix setting. Very recently, Giri and
Mishra [10] proved the following comparison result which extends [19, Theorem
3.7] to the rectangular case.

Theorem 3.1. [10, Theorem 3.13]
Let A = U1−V1 = U2−V2 be two proper weak regular splittings of different types
of a semimonotone matrix A ∈ Rm×n. Suppose that no row or column of A† is
zero. If U †2 ≤ U †1 , then ρ(U †1V1) ≤ ρ(U †2V2) < 1.

We next provide an example where the condition “no row or column of A† is
zero” in Theorem 3.1 fails, but the conclusion holds.

Example 3.2. Let A =

(
6 −2 0
−3 4 0

)
= U1 − V1 = U2 − V2, where U1 =(

7 −1 0
−3 4 0

)
and U2 =

(
14 −2 0
−9 12 0

)
, respectively. Then

R(U1) = R(U2) = R(A), N(U1) = N(U2) = N(A), U †1 =

0.1600 0.0400
0.1200 0.2800

0 0

 ≥ 0,

U †1V1 =

0.1600 0.1600 0
0.1200 0.1200 0

0 0 0

 ≥ 0,
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U †2 =

0.0800 0.0133
0.0600 0.0933

0 0

 ≥ 0, V2U
†
2 =

(
0.6400 0.1067
0.0000 0.6667

)
≥ 0.

Hence, A = U1 − V1 is a proper weak regular splitting of type I and A = U2 − V2

is a proper weak regular splitting of type II. Also A† =

 0.2222 0.1111
0.1667 0.3333

0 0

 ≥ 0

and U †1 =

 0.1600 0.0400
0.1200 0.2800

0 0

 ≥ U †2 =

 0.0800 0.0133
0.0600 0.0933

0 0

. But 0.2800 =

ρ(U †1V1) ≤ ρ(U †2V2) = 0.6667 < 1.

This leads to the fact that Theorem 3.1 may be true even without the assump-
tion “no row or column of A† is zero”. This is stated and proved in the next
result. The technique used in this proof is different from the earlier proof.

Theorem 3.3. Let A = U1 − V1 = U2 − V2 be two proper weak regular splittings
of different types of a semimonotone matrix A ∈ Rm×n. If U †2 ≤ U †1 , then

ρ(U †1V1) ≤ ρ(U †2V2) < 1.

Proof. Let us first consider that A = U1 − V1 is a proper weak regular splitting
of type I and A = U2 − V2 is a proper weak regular splitting of type II. We then
have ρ(U †1V1) < 1 and ρ(V2U

†
2) < 1 by Theorem 2.2. The conditions U †1V1 ≥ 0

and ρ(U †1V1) < 1 imply (I − U †1V1)
−1 ≥ 0. Similarly, (I − V2U

†
2)−1 ≥ 0. Now,

postmultiplying U †2 ≤ U †1 by (I − V2U †2)−1, we obtain

A† = U †2(I − V2U †2)−1 ≤ U †1(I − V2U †2)−1, (3.1)

and then premultiplying (3.1) by (I − U †1V1)−1, we get

(I − U †1V1)−1A† ≤ (I − U †1V1)−1U
†
1(I − V2U †2)−1 = A†(I − V2U †2)−1. (3.2)

Since U †1V1 ≥ 0, there exists an eigenvector x ≥ 0 such that

xTU †1V1 = ρ(U †1V1)x
T .

So, x ∈ R(V T
1 ) ⊆ R(AT ). Premultiplying (3.2) by xT , we have

1

1− ρ(U †1V1)
xTA† ≤ xTA†(I − V2U †2)−1.

From [4, Theorem 2.1.11], we obtain

1

1− ρ(U †1V1)
≤ 1

1− ρ(V2U
†
2)

=
1

1− ρ(U †2V2)
, (3.3)

as xTA† ≥ 0 and xTA† 6= 0. Suppose that xTA† = 0, then xTA†A = 0, i.e.,
(A†A)Tx = A†Ax = x = 0, a contradiction. Hence xTA† 6= 0. Now, the desired
result follows immediately from (3.3). The proof for the other types of splittings
can be done similarly. �

The next example shows that the converse of the above result is not true.
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Example 3.4. Let A =

(
7 −3 7
−2 8 −2

)
= U1 − V1 = U2 − V2, where U1 =(

21 −6 21
−6 16 −6

)
and U2 =

(
14 −6 14
−8 32 −8

)
, respectively. Then R(U1) =

R(U2) = R(A), N(U1) = N(U2) = N(A), U †1 =

0.0267 0.0100
0.0200 0.0700
0.0267 0.0100

 ≥ 0, U †1V1 =0.3333 0 0.3333
0 0.5000 0

0.3333 0 0.3333

 ≥ 0, V2U
†
2 =

(
0.5000 0

0 0.7500

)
≥ 0. Hence, A =

U1−V1 is a proper weak regular splitting of type I and A = U2−V2 is a proper weak

regular splitting of type II. Also A† =

 0.0800 0.0300
0.0400 0.1400
0.0800 0.0300

 ≥ 0 and ρ(U †1V1) =

0.6667 < ρ(U †2V2) = 0.7500 < 1. But U †2 =

 0.0400 0.0075
0.0200 0.0350
0.0400 0.0075

 6≤ U †1 = 0.0267 0.0100
0.0200 0.0700
0.0267 0.0100

 .

For two proper weak regular splittings of the same type, we have the following
comparison result.

Theorem 3.5. Let A = U1−V1 = U2−V2 be two proper weak regular splittings of
the same type of a semimonotone matrix A ∈ Rm×n. If there is an α, 0 < α ≤ 1
such that

U1 ≤ αU2,

then

ρ(U †1V1) ≤ ρ(U †2V2) < 1, whenever α = 1 and

ρ(U †1V1) < ρ(U †2V2) < 1, whenever 0 < α < 1.

Proof. Assume that the given splittings are proper weak regular of type I and the
condition U1 ≤ αU2 holds. Premultiplying U1 ≤ αU2 by A†, we obtain

A†U1 ≤ αA†U2, i.e.,

(I − U †1V1)−1U
†
1U1 ≤ α(I − U †2V2)−1U

†
2U2. (3.4)

Since U †1V1 ≥ 0, there exists a non-negative eigenvector x such that U †1V1x =

ρ(U †1V1)x. Now, postmultiplying (3.4) by x, we obtain

x

1− ρ(U †1V1)
≤ α(I − U †2V2)−1x,

which implies
1

1− ρ(U †1V1)
≤ α

1− ρ(U †2V2)
,



148 C.K. GIRI, D. MISHRA

by [4, Theorem 2.1.11]. Hence

(1− α) + αρ(U †1V1) ≤ ρ(U †2V2).

Now, the required result follows immediately. For the case, when the given split-
tings are proper weak regular with type II the proof is similar. �

Theorem 3.5 is also true if we replace the condition the same type by different
types. Note that for the square nonsingular case, Song [17] proved a similar
result(i.e., a part of Theorem 2.11) but for nonnegative splittings (see Definition
2.1 (iv), [17] for its definition).

3.2. Proper Multisplitting Theory. We next proceed to discuss proper multi-
splitting theory. The definition of a proper multisplitting of a rectangular matrix
introduced by Climent and Perea [8] is as follows:

Definition 3.6. [8, Definition 2]
The triplet (Ul, Vl, El)

p
l=1 is a proper multisplitting of A ∈ Rm×n if

(i) A = Ul − Vl is a proper splitting, for each l = 1, 2, . . . , p,

(ii) El ≥ 0, for each l = 1, 2, . . . , p is a diagonal n× n matrix, and

p∑
l=1

El = I,

where I is the n× n identity matrix.

A proper multisplitting is called a proper regular multisplitting or a proper weak
regular multisplitting of type I, if each one of the proper splitting A = Ul−Vl is a
proper regular splitting or a proper weak regular splitting of type I, respectively.
Climent and Perea [8] considered the following parallel iterative scheme:

xk+1 = Hxk +Gb, k = 1, 2, . . . , (3.5)

where (Ul, Vl, El)
p
l=1 is a proper multisplitting of A ∈ Rm×n, H =

p∑
l=1

ElU
†
l Vl

and G =

p∑
l=1

ElU
†
l . Now, we have the following convergence result for a proper

multisplitting which generalizes a result stated in the introduction part of [7] to
rectangular matrices.

Lemma 3.7. Let (Ul, Vl, El)
p
l=1 be a proper multisplitting of A ∈ Rm×n. Then,

the iterative scheme (3.5) converges to A†b for every x0 if and only if ρ(H) < 1.
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Proof. We have (I − U †l Vl)A† = U †l for each l = 1, 2, . . . , p. So,

G =

p∑
l=1

ElU
†
l

=

p∑
l=1

El(I − U †l Vl)A
†

= [

p∑
l=1

El −
p∑

l=1

ElU
†
l Vl
]
A†

= (I −H)A†.

Suppose that the iterative scheme (3.5) converges to A†b for any initial vector
x0. To prove ρ(H) < 1, we show that for any y ∈ Rn, lim

k→∞
Hky = 0. Let y ∈ Rn

be an arbitrary vector, and x be the unique least squares solution to (3.5). Define
x0 = x− y, and, for k ≥ 1, xk = Hxk−1 +Gb. Then (xk) converges to x. Also,

x− xk = (Hx+Gb)− (Hxk−1 +Gb) = H(x− xk−1),

so

x− xk = H(x− xk−1) = H2(x− xk−2) = · · · = Hk(x− x0) = Hky.

Hence lim
k→∞

Hky = lim
k→∞

Hk(x − x0) = lim
k→∞

(x − xk) = 0. Hence ρ(H) < 1 by [5,

Theorem 7.17].
Conversely, let ρ(H) < 1 and x0 be any initial vector. From (3.5), we have

xi = H ix0 + (I +H + · · ·+H i−1)Gb.

Since ρ(H) < 1, the matrix H is convergent, and lim
i→∞

H ix0 = 0 by [5, Theorem

7.17]. So (I −H)−1 =
∞∑
i=1

H i by [4, Lemma 6.2.1]. Hence

lim
i→∞

xi = lim
i→∞

H ix0 +

( ∞∑
i=0

H i

)
Gb = (I −H)−1Gb = A†b.

�

The next result is obtained as a corollary in the case of a nonsingular matrix
A.

Corollary 3.8. ([7])
Let (Ul, Vl, El)

p
l=1 be a multisplitting of A ∈ Rn×n. Then, the iterative scheme

(3.5) converges to A−1b for every x0 if and only if ρ(H) < 1.

The next result presented below extends [16, Theorem 1 (a)] to rectangular
matrices which is a characterization of a semimonotone matrix A ∈ Rm×n.

Theorem 3.9. Let (Ul, Vl, El)
p
l=1 be a proper weak regular multisplitting of type

I of A ∈ Rm×n. Then, A† ≥ 0 if and only if ρ(H) < 1.
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Proof. The first part is shown in [8, Theorem 4].
Conversely, since (Ul, Vl, El)

p
l=1 is a proper weak regular multisplitting of type

I, we have H ≥ 0 and G ≥ 0. Assume that ρ(H) < 1. By [4, Lemma 6.2.1],
(I −H)−1 ≥ 0. Then A† = (I −H)−1G ≥ 0. �

For nonsingular case, we have the following corollary.

Corollary 3.10. [16, Theorem 1 (a)]
Let (Ul, Vl, El)

p
l=1 be a weak regular multisplitting of type I of A ∈ Rn×n. Then,

A−1 ≥ 0 if and only if ρ(H) < 1.

In the following result, we introduce an upper bound and a lower bound for
the spectral radius of the iteration matrix H by extending [7, Theorem 3.4].

Theorem 3.11. Let (Ul, Vl, El)
p
l=1 be a proper weak regular multisplitting of type

I and A = U − V = U − V be two proper weak regular splittings of type I of a
semimonotone matrix A ∈ Rm×n. If one of the following conditions holds.

(i) U
†
A ≤ U †l A ≤ U †A, for each l = 1, 2, . . . , p.

(ii) (U
†
A)T ≤ U †l A ≤ (U †A)T , for each l = 1, 2, . . . , p.

Then ρ(U †V ) ≤ ρ(H) ≤ ρ(U
†
V ) < 1.

Proof. By Theorem 3.9, the given multisplitting is convergent, and by Theorem
2.2, the splittings A = U−V = U−V are also convergent. For any proper splitting

A = U−V , we obtain U †A = (I−U †V )A†A. So, (I−U †V )A†A ≤ (I−U †l Vl)A†A ≤
(I−U †V )A†A which implies 0 ≤ U †V ≤ U †l Vl ≤ U

†
V . Premultiplying by

∑p
l=1El,

we get 0 ≤ U †V ≤ H ≤ U
†
V . Hence ρ(U †V ) ≤ ρ(H) ≤ ρ(U

†
V ) < 1 by [18,

Theorem 2.21]. The proof of 2nd part follows similarly due to the fact that
ρ(BT ) = ρ(B). �

A result showing an upper bound and a lower bound for the spectral radius of
H is illustrated below which improves the first part of [7, Theorem 3.3].

Theorem 3.12. Let (Ul, Vl, El)
p
l=1 be a proper weak regular multisplitting of type I

of a semimonotone matrix A ∈ Rm×n and A = U−V = U−V be two proper weak
regular splittings of type II. If R(El) ⊆ R(AT ) and U ≤ Ul ≤ U, for each l =
1, 2, . . . , p, then

ρ(U †V ) ≤ ρ(H) ≤ ρ(U
†
V ) < 1.

Proof. By Theorem 2.2, it follows that ρ(U
†
V ) < 1 and ρ(U †V ) < 1. Premulti-

plying Ul ≤ U by U †l and postmultiplying the same by U
†
, we have U †l UlU

† ≤

U †l U U
†
, i.e., U

† ≤ U †l . Let U †1 =

p∑
l=1

ElU
†
l and U †2 = U

†
. Then, by [11, Theorem

3.21], it follows that U †1V1 = H. Since U †l ≥ U
†
, we obtain U †1 ≥ U †2 . Hence,

by Theorem 3.3, we get ρ(H) ≤ ρ(U
†
V ). Similarly, by premultiplying U †l and

postmultiplying U † to U ≤ Ul, we obtain U †l U U † ≤ U †l UlU
†, i.e., U †l ≤ U †. Let
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U †1 = U †, U †2 =

p∑
l=1

ElU
†
l . Then U †1 ≥ U †2 . So, by Theorem 3.3, we get ρ(U †V ) ≤

ρ(H). Combining both the cases, we obtain ρ(U †V ) ≤ ρ(H) ≤ ρ(U
†
V ) < 1. �

Recently, Giri and Mishra [11] proved that the iteration matrix H in (3.5)
induces a unique proper weak regular splitting of type I under some sufficient
conditions. Next, we prove that the induced splitting in [11, Theorem 3.21],
is also a proper regular splitting under the assumption of an extra sufficient
condition.

Theorem 3.13. Let (Ul, Vl, El)
p
l=1 be a proper weak regular multisplitting of type I

of a semimonotone matrix A ∈ Rm×n. If R(El) ⊆ R(AT ) and there exists a non-

negative matrix M ∈ Rm×n such that (A+M)U †l Vl ≥M, for each l = 1, 2, . . . , p,
then the unique splitting A = B − C induced by H with B = A(I − H)−1 is a
proper regular splitting.

Proof. By [11, Theorem 3.21], we have ρ(H) < 1 and the unique splitting A =
B − C induced by H is a proper weak regular of type I. Then

C = B − A
= A(I −H)−1 − A
= AH(I −H)−1

≥M(I −H)(I −H)−1

= M ≥ 0

and thus A = B − C is proper regular. �

The following example illustrates Theorem 3.13.

Example 3.14. LetA =

 2 −3
0 5
4 −6

 . Set U1 =

 4 −3
0 5
8 −6

 , U2 =

 6 −3
0 5
12 −6

,

E1 =

(
1 0
0 0

)
and E2 =

(
0 0
0 1

)
, respectively. Then R(U1) = R(U2) = R(A),

N(U1) = N(U2) = N(A), U †1 =

(
0.0500 0.1500 0.1000

0 0.2000 0

)
≥ 0, U †1V1 =(

0.5000 0
0 0

)
≥ 0, U †2 =

(
0.0333 0.1000 0.0667

0 0.2000 0

)
≥ 0 and U †2V2 =(

0.6667 0
0.0000 0

)
≥ 0. Hence, (Uk, Vk, Ek) is a proper weak regular multisplitting

of type I with R(Ek) ⊆ R(AT ) for each k = 1, 2. Let M =

 1.5 0
0 0

2.5 0

 .



152 C.K. GIRI, D. MISHRA

Then (A+M)U †1V1 =

 1.75 0
0 0

2.5 0

 ≥
 1.5 0

0 0
2.5 0

 = M and (A+M)U †2V2 = 2.3333 0
0.0000 0
3.3333 0

 ≥
 1.5 0

0 0
2.5 0

 = M . So, it satisfies all the conditions of Theorem

3.13. Therefore, the unique induced splitting A = B − C is proper regular, as

R(B) = R(A), N(B) = N(A), B† =

(
0.05 0.1500 0.10

0 0.2 0

)
≥ 0 and C = 2 0

0 0
4 0

 ≥ 0.

Theorem 3.13 admits the following corollary in the case of nonsingular matrices.

Corollary 3.15. Let (Ul, Vl, El)
p
l=1 be a weak regular multisplitting of type I of

a monotone matrix A ∈ Rn×n. If there exists a non-negative matrix M ∈ Rn×n

such that (A + M)U−1l Vl ≥ M, for each l = 1, 2, . . . , p, then the unique splitting
A = B − C induced by H with B = A(I −H)−1 is a regular splitting.

By substituting M = 0 in Theorem 3.13, we have the following result.

Corollary 3.16. Let (Ul, Vl, El)
p
l=1 be a proper weak regular multisplitting of

type I of a semimonotone matrix A ∈ Rm×n. If R(El) ⊆ R(AT ) and VlU
†
l Vl ≤

Vl, for each l = 1, 2, . . . , p, then the unique splitting A = B − C induced by H
with B = A(I −H)−1 is a proper regular splitting.

Theorem 3.13 is again proved below under the assumption of different condi-
tions by generalizing [14, Theorem 3.3].

Theorem 3.17. Let (Ul, Vl, El)
p
l=1 be a proper weak regular multisplitting of type

I of a semimonotone matrix A ∈ Rm×n. Assume that, for each l, El = αlI with
αl > 0 and

∑p
l=1 αl = 1. Let Va =

∑p
l=1 αlVl, and Vb ≤ Vl, for each l = 1, 2, . . . , p.

If there exists a non-negative matrix U ∈ Rm×n such that (Vb − U)U †l Vl ≤ Va −
U, for each l = 1, 2, . . . , p, then the unique splitting A = B − C induced by H
with B = A(I −H)−1 is a proper regular splitting.
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Proof. As C = B − A = AH(I −H)−1, we have

C =

p∑
l=1

αlAU
†
l Vl(I −H)−1

=

p∑
l=1

αlVl(I − U †l Vl)(I −H)−1

=

p∑
l=1

αlVl(I −H)−1 −
p∑

l=1

αlVlU
†
l Vl(I −H)−1

≥ Va(I −H)−1 − Vb
p∑

l=1

αlU
†
l Vl(I −H)−1

= Va(I −H)−1 − VbH(I −H)−1

= (Va − VbH)(I −H)−1

≥ U ≥ 0.

�
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