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THE SECOND SYMMETRIC PRODUCT OF FINITE GRAPHS
FROM A HOMOTOPICAL VIEWPOINT
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Abstract. This paper describes the classification of the n-fold symmetric
product of a finite graph by means of its homotopy type, having as universal
models the n-fold symmetric product of the wedge of n-circles; and introduces
a CW-complex called binomial torus, which is homeomorphic to a space that is
a strong deformation retract of the second symmetric products of the wedge of
n-circles. Applying the above we calculate the fundamental group, Euler char-
acteristic, homology and cohomology groups of the second symmetric product
of finite graphs.

1. Introduction

A continuum is a nondegenerate compact connected metric space. Given a
continuum X and n ∈ N, we consider the following hyperspaces of X:

2X =
{
A ⊂ X : A is nonempty and closed

}
,

C(X) =
{
A ∈ 2X : A is connected

}
,

Fn(X) =
{
A ∈ 2X : A has at most n points

}
.

We endow at 2X with the Vietoris topology [6, Theorem 1.2, p. 3], which is
generated by the base

β =
{
〈U1, . . . , Uk〉 : Ui are open in X, for all i = 1, . . . , k

}
,
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where

〈U1, . . . , Uk〉 =
{
A ∈ 2X : A ⊆

k⋃
i=1

Ui and A ∩ Ui 6= ∅ for each i = 1, . . . , k
}
.

The Vietoris topology matches with the Hausdorff metric [6, Theorem 3.2, p.
18] defined by

H(A,B) = max{sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}}.

The hyperspace Fn(X) is called n-fold symmetric product of X. The symbols
≈, ∼= denote homeomorphism and isomorphism respectively. The notion of sym-
metric product, was first introduced by K. Borsuk and S. Ulam in [1], where they
proved that for the interval I = [0, 1] and n = 1, 2, 3, Fn(I) ≈ In, but that Fn(I)
cannot be embedded in Rn for n ≥ 4. R. Molski in [9] shows that F2(I2) is home-
omorphic to I4 but that neither Fn(I2) nor F2(In) can be embedded in R2n for
any n ≥ 3. Before, R. Bott in [2] shows that F3(S1) ≈ S3. In [11] R. M. Schori
shows that Fn(I) ≈ cone

(
Dn−2

)
× I, where Dn−2 = {A ∈ Fn(I) : 0, 1 ∈ A}.

Some results from homotopical viewpoint Fn(X): S. Maćıas in [7] shows that for
any continuum X, the first group of cohomology of Čech H1(Fn(X);Z) vanishes
for n ≥ 3, and D. Handel in [4] proved that for closed connected n-manifolds
Mn (for n ≥ 2), the singular cohomology group H i(Fk(M

n);Z/2Z) is isomorphic
to Z/2Z for i = nk, and 0 for i > nk. Also it shows that the inclusion maps
Fk(X, x0) ↪→ F2k−1(X, x0) and Fk(X) ↪→ F2k+1(X) induce the zero map on all
homotopy groups for pathwise connected Hausdorff space X. N. Chinen and A.
Koyama in [3] shows that for n ∈ N, F2n+1(S1) has the same homotopy type of
S2n+1 and F2n(S1) has the same homotopy type of S2n−1.

In this paper we are interested in studying the homotopy of the symmetric prod-
ucts of finite graphs, we will give a classification by means of its homotopy type
in Section 3. In Section 4 we will define a new geometric object called binomial
torus, which is a CW-complex. We will study its fundamental group, homology
and cohomology groups. Subsequently in Section 5 we will show that the second
symmetric product of the bouquet of n-circles contains a subset homeomorphic to
the binomial torus which is a strong deformation retract of the second symmetric
product of the bouquet of n-circles. Thus developed machinery of Section 4 will
apply to the second symmetric products of a finite graph.

2. Preliminaries

A map is a continuous function. Let f, g : X → Y be maps. We say that f
is homotopic to g (in symbols f ' g) if there exists a homotopy of f to g, that
is, a map H : X × I → Y such that H(x, 0) = f(x) and H(x, 1) = g(x). A map
f : X → Y is called a homotopy equivalence if there is a map g : Y → X such
that g ◦ f ' 1X and f ◦ g ' 1Y , in this case the spaces X and Y are said to be
homotopy equivalent or to have the same homotopy type, and the usual notation
is X ' Y . A space having the homotopy type of a point is called contractible.

Let X and Y be pointed spaces. Their topological product X × Y is also
pointed with base point (x0, y0) if x0 ∈ X and y0 ∈ Y are the base points of X
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and Y , respectively. The wedge of X and Y can be considered as a subspace of
X × Y ,

X ∨ Y = {(x, y) ∈ X × Y : x = x0 or y = y0};
that is, X ∨ Y = X × {y0} ∪ {x0} × Y ⊂ X × Y . For example S1 ∨ S1 is
homeomorphic to the figure eight, two circles touching at a point. In general, let
{Xα : α ∈ Λ} be a family of topological spaces. We denote their coproduct or
topological sum by

∐
α∈ΛXα. If {Xα : α ∈ Λ} is a family of pointed spaces, we

define the wedge as the quotient space∨
α∈Λ

Xα =
∐
α∈Λ

Xα/{xα : α ∈ Λ},

where for each α, xα ∈ Xα is the base point. For example, the bouquet of n-circles
is
∨
n S

1, which it is the union of n-circles at a single point.
An arc is a continuum that is homeomorphic to the interval I. A graph G is

a topological space which consists of a collection of points V (G), called vertices,
and a collection of edges E(G). Each edge is either homeomorphic to an interval
I joining two distinct vertices, or it is homeomorphoric to a circle joining a given
vertex to itself. It is assumed that any two distinct edges are either disjoint, or
else intersect in a common end point.

A finite graph is a continuum that has only a finite number of vertices and
edges. If G is a finite graph, let us denote by |V (G)| the number of vertices of G
and |E(G)| the number of edges of G. The Euler characteristic of a finite graph
G is defined by χ(G) = |V (G)| − |E(G)|. The Euler characteristic is a homotopy
type invariant, namely.

Lemma 2.1. [8, Corollary 6.3, p. 200] If two finite graphs G1 and G2 have the
same homotopy type, then χ(G1) = χ(G2).

A subgraph of a graph G is a graph whose set of vertices and set of edges are
subsets of G. A tree is a finite graph that contains no simple closed curve. By
a tree in a finite graph G we mean a subgraph that is a tree. We call a tree in
a finite graph G maximal if it contains all the vertices of G. In fact, every finite
graph contains a maximal tree ([5, Proposition 1 A.1, p. 84]). The trees are also
characterized by the Euler characteristic.

Lemma 2.2. [8, Proposition 6.1 and 6.4, p. 201] Let G be a finite graph. Then
G is a tree if and only if χ(G) = 1.

Let G be a finite graph and T ⊆ G a maximal tree with set of edges E(T ) =
{e1, . . . , es}. Let E(G) − E(T ) = {a1, . . . , ar} the set of edges that are not in T
(this set can be empty).

On the other hand, the quotient space G/T is a finite graph with only one
vertex. Since T contains all the vertices of G, then the set of edges of G/T
is E(G/T ) = {a1, . . . , ar}, where its elements are loops based in such vertex.
Therefore G/T is a bouquet of r-circles and its Euler characteristic is χ(G/T ) =
1− r.

Since T is contractible, then the quotient function q : G −→ G/T is a homotopy
equivalence ([5, Proposition 0.17]). Then by Lemma 2.1 χ(G) = χ(G/T ). So we
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have |V (G)|−|E(G)| = 1−r, hence r = 1−|V (G)|+ |E(G)|. The positive integer
r is called genus of G. Thus we have the following result.

Theorem 2.3. Let G be a finite graph. Then G is homotopically equivalent to∨r
i=1 Ci, where r = 1 − |V (G)| + |E(G)| and Ci is homeomorphic to S1 for all

i = 1, . . . , r.

3. Classification

Let f : X → Y be a map between continua. For all n ≥ 1, we define the induced
function Fn(f) : Fn(X) → Fn(Y ) by Fn(f)(A) = f(A), which is continuous
([6, Lemma 13.3, p. 106]). If X, Y, Z are continua and f : X → Y and g : Y → Z
are maps, then the commutative diagram

Y
g // Z

X

f

OO

g◦f

>>

induces the commutative diagram

Fn(Y )
Fn(g)

// Fn(Z)

Fn(X)

Fn(f)

OO

Fn(g◦f),

::

where Fn(g ◦ f) = Fn(g) ◦ Fn(f). Thus Fn(−) defines a homotopic functor.

Theorem 3.1. [4, Proposition 3.2, p. 758] Let X, Y be continua and f, g : X → Y
maps. If h : X × I → Y is a homotopy between f and g. Then for every n ∈ N,
hn : Fn(X)× I → Fn(Y ) defined by

hn({x1, . . . , xm}, t) = {h(x1, t), . . . , h(xm, t)} where m ≤ n

is a homotopy between Fn(f) and Fn(g).

If X is homotopically equivalent to Y , then there are continuous functions
f : X → Y and g : Y → X such that g ◦f ' 1X and f ◦ g ' 1Y . By the Theorem
3.1, Fn(f) : Fn(X) → Fn(Y ) and Fn(g) : Fn(Y ) → Fn(X) are continuous, such
that Fn(g)◦Fn(f) ' Fn(1X) and Fn(f)◦Fn(g) ' Fn(1Y ). So we have the following
result.

Theorem 3.2. Let X and Y be continua, such that X is homotopically equivalent
to Y , then Fn(X) is homotopically equivalent to Fn(Y ), for all n ≥ 1.

Now if G is a finite graph, by Theorem 2.3, G has the same homotopy type of
the bouquet of r-circles

∨
r S

1, where r = 1−|V (G)|+ |E(G)|. Thus, by Theorem
3.2, Fn(G) has the same homotopy type of the Fn

(∨
r S

1
)

for all n ∈ N. So,the
following theorem is clear.

Theorem 3.3. Let G be a finite graph, and let r = 1 − |V (G)| + |E(G)|. Then
for all n ∈ N, Fn(G) has the same homotopy type of Fn

(∨r
i=1Ci

)
, where Ci is

homeomorphic to S1 for all i = 1, . . . , r.
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Given two finite graphs G1 and G2, it is difficult to establish when Fn(G1) is
homeomorphic to Fn(G2) for all n ≥ 2. However, for the homotopic case the
problem is solved applying the Theorem 3.3, as shown in the following corollary.

Corollary 3.4. Let G1, G2 be two finite graphs such that its genus is the same,
then Fn(G1) and Fn(G2) have the same homotopy type, for all n ∈ N.

In particular, if we take a finite graph G of genus r = 0, then G is a tree
(Lemma 2.2). Thus G is homotopy equivalent to the point {p}. So Fn(G) has
the same homotopy type of Fn({p}) = {p}, for all n ∈ N.

We have the ingredients to make a classification of the n-fold symmetric product
of all finite graphs through homotopy, indeed: For all n ∈ N, consider the set

GFn =
{
Fn(G) : G is a finite graph

}
.

Let us define a relationship in GFn, as follows: Fn(G1) ∼ Fn(G2) if and only if
Fn(G1) has the same homotopy type of Fn(G2). Notice that the homotopy equiv-
alence is an equivalence relation, then we can consider the set of all equivalence
classes

GFn/ ∼=
{[
Fn(G)

]
: Fn(G) ∈ GFn

}
,

where
[
Fn(G)

]
denotes the equivalence class of the n-fold symmetric product

Fn(G). In consequence of Theorem 3.3, we have

Corollary 3.5. For all n ∈ N, the set of equivalence classes GFn/ ∼ can be
written as{[

Fn({p})
]
,
[
Fn(C1)

]
,
[
Fn(C1 ∨ C2)

]
,
[
Fn(C1 ∨ C2 ∨ C3)

]
, . . .

}
,

and indeed a bijective function

ϕ : Z+ ∪ {0} −→ GFn/ ∼
defined by

ϕ(m) =

{ [
Fn({p})

]
if m = 0,[

Fn(C1 ∨ C2 ∨ · · · ∨ Cm)
]

if m 6= 0.

This result shows that we have homotopic universal models, i.e., we have re-
presentatives of equivalence classes distinguished, for k ≥ 1, namely[

Fn

( k∨
i=1

Ci

)]
=

{
Fn(G) ∈ GFn : χ(G) = 1− k

}
.

4. Binomial Torus

In this section we define a geometric object called binomial torus, which is a
CW-complex. We study some of its algebraic invariants, such as: fundamental
group, homology and cohomology groups. The binomial torus plays a vital role in
the study of homotopical properties of the second symmetric product of a finite
graph.

We denote by i the simple closed curve Ci, for all i = 1, . . . , n. If

1 ∩ 2 ∩ · · · ∩ n = {p},
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then the bouquet of n-circles is
∨n
i=1 i, represented in Figure 1.

 

 

 
 ..

.

 

Figure 1. bouquet of n-circles.

In the same way, for all i, j = 1, . . . , n the torus Ci ×Cj will be denoted by ij.
The torus ij is illustrated in Figure 2.

Figure 2. Torus ij.

Definition 4.1. Let
∨n
i=1 i a bouquet of n-circles, with n ≥ 2. We define the

binomial torus, and we denote by T(n
2)

, the union of
(
n
2

)
torus:

T(n
2)

= (12 ∪ 13 ∪ · · · ∪ 1n) ∪ (23 ∪ 24 ∪ · · · ∪ 2n) ∪ · · · ∪ (n− 1)n

=
n−1⋃
i=1

( n⋃
j=i+1

ij

)
,

with the following intersections

12 ∩ 13 ∩ · · · ∩ 1n = 1× {p},
21 ∩ 23 ∩ · · · ∩ 2n = 2× {p},

...

n1 ∩ n2 ∩ · · · ∩ n(n− 1) = n× {p}.
Geometrically, the binomial torus can be represented as shown in Figure 3.
To calculate the fundamental group of binomial torus we can make a presen-

tation with generators 1, . . . , n and the following relations
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Figure 3. Binomial torus.

121−12−1 = e, 131−13−1 = e, . . . , 1n1−1n−1 = e
232−13−1 = e, 242−14−1 = e, . . . , 2n2−1n−1 = e
343−14−1 = e, 353−15−1 = e, . . . , 3n3−1n−1 = e

...
(n− 1)n(n− 1)−1n−1 = e.

We denote by [i, j] = iji−1j−1 the commutator. Therefore the fundamental
group of the binomial torus based on the point p is

π1

(
T(n

2)
, p
)

=
〈
1, . . . , n | [i, j], for all 1 ≤ i < j ≤ n

〉
∼= Zn.

So, we have the following theorem.

Theorem 4.2. The fundamental group of binomial torus T(n
2)

is a free abelian

group of rank n.

On the other hand, we can see T(n
2)

as a CW-complex, as shown in Figure 4.

Where e0
1 = {p} is a 0-cell, the simple closed curves e1

i = i, for all i = 1, . . . , n
are 1-cell. Finally e2

ij are 2-cell for all i = 1, . . . , n − 1, j = 1, . . . n and i < j.
Therefore, the cell decomposition of binomial torus is,

T(n
2)

= e0
1 ∪
( n⋃
i=1

e1
i

)
∪
( n−1⋃

i=1

( n⋃
j=i+1

e2
ij

))
.

The cell chains of T(n
2)

are

C0 = 〈e0
1〉,

C1 = 〈e1
1, . . . , e

1
n〉,

C2 = 〈e2
12, . . . , e

2
1n, e

2
23, . . . , e

2
2n, e

2
34, . . . , e

2
3n, . . . , e

2
(n−1)n〉.

Thus C0
∼= Z, C1

∼= Zn and C2
∼= Z(n

2). Therefore, the sequence of chain
complexes and chain maps are

0
∂3−−−−−→ C2

∂2−−−−−→ C1
∂1−−−−−→ C0

∂0−−−−−→ 0
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Figure 4. T(n2)
shown as a CW-complex.

Notice that

∂0(e0
1) = 0.

∂1(e1
i ) = p− p = 0, for all i = 1, . . . , n.

∂2(e2
ij) = i+ j − i− j = 0, for all i = 1, . . . , n− 1, j = 1, . . . , n and i < j.

Which implies that the cycles are

Z0

(
T(n

2)
;Z
)

= ker(∂0) = Z,

Z1

(
T(n

2)
;Z
)

= ker(∂1) = Zn,

Z2

(
T(n

2)
;Z
)

= ker(∂2) = Z(n
2).

Also the boundaries are

B0

(
T(n

2)
;Z
)

= im(∂1) = 0,

B1

(
T(n

2)
;Z
)

= im(∂2) = 0,

B2

(
T(n

2)
;Z
)

= im(∂3) = 0.

Therefore we have the following result.

Theorem 4.3. The homology groups of the binomial torus T(n
2)

with coefficients

in Z are

Hq

(
T(n

2)
;Z
)

=


Z if q = 0,
Zn if q = 1,

Z(n
2) if q = 2,

0 if q ≥ 3.

Thus the Betti numbers for the binomial torus T(n
2)

are

b0

(
T(n

2)
)

= 1, b1

(
T(n

2)
)

= n, b2

(
T(n

2)
)

=

(
n

2

)
, bi

(
T(n

2)
)

= 0 ∀i ≥ 3.

Therefore the Euler characteristic of the binomial torus T(n
2)

is
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χ
(
T(n

2)
)

= b0

(
T(n

2)
)
− b1

(
T(n

2)
)

+ b2

(
T(n

2)
)

= 1− n+

(
n

2

)
=

n2 − 3n+ 2

2

=
(n− 2)(n− 1)

2
.

The first values of the Euler characteristic of the binomial torus are shown in
the following table:

n 2 3 4 5 6 7 8 9 10 11
χ
(
T(n

2)
)

0 1 3 6 10 15 21 28 36 45

Notice that if k = n−2, then χ
(
T(n

2)
)

= k(k+1)/2. Thus we have the following

result.

Theorem 4.4. For n ≥ 3, χ
(
T(n

2)
)

is a triangular number.

To calculate the cohomology groups of the binomial torus T(n
2)

we use the

universal coefficient theorem for cohomology ([10, Theorem 7.5, p. 66]), namely:

Theorem 4.5. Let X be a CW-complex. We can calculate cohomology over a
general coefficient group G using the corresponding integral homology and the
extension product

Hn(X;G) ∼= Hom
(
Hn(X;Z), G

)
⊕ Ext

(
Hn−1(X;Z), G

)
.

For any abelian group G, we have that Hom(Z, G) ∼= G and Ext(Z, G) = 0 (see
the pages 62 and 63 of [10]). In particular Hom(Z,Z) ∼= Z and Ext(Z,Z) = 0.
Furthermore, for any two abelian groups A and B,

Hom(A⊕B,Z) = Hom(A,Z)⊕Hom(B,Z)

and
Ext(A⊕B,Z) = Ext(A,Z)⊕ Ext(B,Z)

(see [5] page 195). The following proposition is easy to see.

Proposition 4.6. For any positive integer r, we have

Hom(Zr,Z) ∼= Zr, Ext(Zr,Z) ∼= 0.

By Theorem 4.3, Theorem 4.5 and Proposition 4.6, we have the following:

H0

(
T(n

2)
;Z
)
∼= Hom

(
H0

(
T(n

2)
;Z
)
,Z
)
⊕ Ext

(
H−1

(
T(n

2)
;Z
)
,Z
)

∼= Hom
(
Z,Z

)
⊕ Ext

(
0,Z

)
∼= Z⊕ 0
∼= Z.
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H1

(
T(n

2)
;Z
)
∼= Hom

(
H1

(
T(n

2)
;Z
)
,Z
)
⊕ Ext

(
H0

(
T(n

2)
,Z
)
,Z
)

∼= Hom
(
Zn,Z

)
⊕ Ext

(
Z,Z

)
∼= Zn ⊕ 0
∼= Zn.

H2

(
T(n

2)
;Z
)
∼= Hom

(
H2

(
T(n

2)
;Z
)
,Z
)
⊕ Ext

(
H1

(
T(n

2)
;Z
)
,Z
)

∼= Hom
(
Z(n

2),Z
)
⊕ Ext

(
Zn,Z

)
∼= Z(n

2) ⊕ 0

∼= Z(n
2).

Thus we have the following result;

Theorem 4.7. The cohomology groups of the binomial torus T(n
2)

with coefficients

in Z are

Hq
(
T(n

2)
;Z
)

=


Z if q = 0,
Zn if q = 1,

Z(n
2) if q = 2,

0 if q ≥ 3.

5. Homology and Cohomology of the second symmetric product
of finite graphs

Suppose that A ⊂ X. We say that A is a strong deformation retract of X if
there exists a homotopy h : X × I → X such that

(i) h(x, 0) = x, if x ∈ X,
(ii) h(x, 1) ∈ A, if x ∈ X,

(iii) h(a, t) = a, if a ∈ A, t ∈ I.

Proposition 5.1. Let X,Y be topological spaces such that X, Y are closed in
X ∪ Y and X ∩ Y = {p}. If Z ⊂ X and W ⊂ Y are both strong deformation
retracts and Z∩W = {p}. Then Z∪W is a strong deformation retract of X ∪Y .

Proof. If Z is a strong deformation retract of X, then there exists a homotopy
h1 : X × I → X such that

h1(x, 0) = x, x ∈ X,
h1(x, 1) ∈ Z, x ∈ X,
h1(a, t) = a, a ∈ Z, t ∈ I.
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On the other hand, if W is a strong deformation retract of Y , then there exists
a homotopy h2 : X × I → X such that

h2(y, 0) = y, y ∈ Y,
h2(y, 1) ∈ W, y ∈ Y,
h2(b, t) = b, b ∈ W, t ∈ I.

Let h : X ∪ Y × I → X ∪ Y defined by

h(x, t) =

{
h1(x, t) if x ∈ X
h2(x, t) if x ∈ Y .

Since Z ∩W = {p} and h1(p, t) = h2(p, t) = p, then h is a continuous function.
Hence

h(x, 0) = x, x ∈ X ∪ Y,
h(x, 1) ∈ Z ∪W, x ∈ X ∪ Y,
h(a, t) = a, a ∈ Z ∪W, t ∈ I.

Therefore Z ∪W is a strong deformation retract of X ∪ Y . �

Proposition 5.2. Let Z be a strong deformation retract of X. Let W be a
topological space such that X ∩W is a subspace of Z. Then Z ∪W is a strong
deformation retract of X ∪W .

Proof. Since Z is a strong deformation retract of X, then there exists a homotopy
h : X × I → X such that h(x, 0) = x, h(x, 1) ∈ Z for all x ∈ X and h(a, t) = a
for all a ∈ Z and t ∈ I. Let h : (X ∪W )× I → X ∪W defined by

h(x, t) =

{
h(x, t) if x ∈ X,
x if x ∈ W .

As X ∩W is a subspace of Z, then h(y, t) = y for all y ∈ X ∩W , thus h is
continuous. Now, observe that

h(x, 0) = x, x ∈ X ∪W,
h(x, 1) ∈ Z ∪W, x ∈ X ∪W,
h(a, t) = a, a ∈ Z ∪W, t ∈ I.

Therefore Z ∪W is a strong deformation retract of X ∪W . �

Theorem 5.3. For all n ≥ 2, F2

(∨n
i=1 i

)
contains a subset T homeomorphic to

the binomial torus T(n
2)

which is a strong deformation retract of F2

(∨n
i=1 i

)
.

Proof. By induction over n. For n = 2, let 1, 2 be two simple closed curves such
that 1 ∩ 2 = {p}. Each element {x, y} ∈ F2

(
1 ∨ 2

)
satisfies one of the following

three possibilities:
(a) {x, y} ⊆ 1,
(b) {x, y} ⊆ 2 or
(c) x ∈ 1 and y ∈ 2.
The set of elements of F2

(
1 ∨ 2

)
that satisfies (a) is

B1 =
{
{x, y} ∈ F2(1 ∨ 2) : x, y ∈ 1

}
,
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and it can be represented as a Moebius strip. Analogously, the set of elements of
F2

(
1 ∨ 2

)
that satisfies (b) is

B2 =
{
{x, y} ∈ F2(1 ∨ 2) : x, y ∈ 2

}
,

that can be represented as another Moebius strip. The set of points that satisfies
(c) is

12 =
{
{x, y} ∈ F2(1 ∨ 2) : x ∈ 1, y ∈ 2

}
,

which is homeomorphic to the torus 12. Hence

F2

(
1 ∨ 2

)
= B1 ∪B2 ∪ 12.

We denote by 1 =
{
{x, p} ∈ F2(1 ∨ 2) : x ∈ 1

}
and 2 =

{
{x, p} ∈ F2(1 ∨ 2) :

x ∈ 2
}

. Note that 1 is a strong deformation retract of B1, and 2 is a strong
deformation retract of B2. Observe that B1 ∩B2 = {p}, then by Proposition 5.1,
1 ∪ 2 is a strong deformation retract of B1 ∪B2. On the other hand(

B1 ∪B2

)
∩ 12 = (B1 ∩ 12) ∪ (B2 ∩ 12) = 1 ∪ 2.

We consider Z = 1 ∪ 2, W = 12 and X = B1 ∪ B2, then by Proposition 5.2
Z ∪W = (1 ∪ 2) ∪ 12 is a strong deformation retract of (B1 ∪B2) ∪ 12.

Since (1 ∪ 2) ∪ 12 = 12, thus 12 is a strong deformation retract of F2

(
1 ∨ 2

)
.

Therefore the binomial torus T1 = 12 ≈ T(2
2)

is a strong deformation retract of

F2

(∨2
i=1 i

)
.

Suppose that F2

(∨n
i=1 i

)
contains a subset T2 homeomorphic to the binomial

torus T(n
2)

such that T is a strong deformation retract of F2

(∨n
i=1 i

)
.

Each element {x, y} ∈ F2

(∨n+1
i=1 i

)
satisfies one of the following three possibil-

ities:
(a) {x, y} ⊂

∨n
i=1 i,

(b) {x, y} ⊂ (n+ 1) or
(c) x ∈

∨n
i=1 i and y ∈ (n+ 1).

Notice that the set of elements of F2

(∨n+1
i=1 i

)
that satisfies (a) is homeomor-

phic to F2

(∨n
i=1 i

)
. The set of elements of F2

(∨n+1
i=1 i

)
that satisfies (b) can be

represented as a Moebius strip, denoted by Bn+1. The set of points that satisfies
(c) is {

{x, y} ∈ F2

( n+1∨
i=1

i
)

: x ∈
n∨
i=1

i, y ∈ (n+ 1)
}
,

which is homeomorphic to
(∨n

i=1 i
)
× (n+ 1). Thus

F2

( n+1∨
i=1

i

)
≈ F2

( n∨
i=1

i

)
∪Bn+1 ∪

( n∨
i=1

i
)
× (n+ 1).

We denote by n+ 1 =
{
{x, p} ∈ F2

(∨n+1
i=1 i

)
: x ∈ (n+ 1)

}
. Notice that n+ 1

is a strong deformation retract of Bn+1. Since F2

(∨n
i=1 i

)
∩Bn+1 = {p}, then by

Proposition 5.1, T2 ∪ n+ 1 is a strong deformation retract of F2

(∨n
i=1 i

)
∪Bn+1.

Making
Z = T2 ∪ n+ 1,
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X = F2

( n∨
i=1

i
)
∪Bn+1,

W =
( n∨
i=1

i
)
× (n+ 1).

We have that X ∩W ≈
∨n+1
i=1 i, so X ∩W ⊂ Z. By Proposition 5.2, Z ∪W =

T2 ∪ n+ 1 ∪
(∨n

i=1 i
)
× (n + 1) is a strong deformation retract of X ∪ W =

F2

(∨n
i=1 i

)
∪Bn+1 ∪

(∨n
i=1 i

)
× (n+ 1).

Since n+ 1 is homeomorphic to (n+ 1) and (n+ 1) ⊆
(∨n

i=1 i
)
× (n+ 1), then

T2 ∪ n+ 1 ∪
( n∨
i=1

i
)
× (n+ 1) ≈

(
T2 ∪

( n∨
i=1

i
))
× (n+ 1).

So we conclude that T3 =
(
T2 ∪

(∨n
i=1 i

))
× (n + 1) is a strong deformation

retract of F2

(∨n+1
i=1 i

)
.

On the other hand,( n∨
i=1

i
)
× (n+ 1) = (1× n+ 1) ∨ · · · ∨ (n× n+ 1)

= 1(n+ 1) ∨ · · · ∨ n(n+ 1).

Observe that we have the following equalities

T(n
2)
∪
( n∨
i=1

i
)
× (n+ 1) = T(n

2)
∪
(

1(n+ 1) ∨ · · · ∨ n(n+ 1)
)

= T(n
2)
∪
(

1(n+ 1) ∪ · · · ∪ n(n+ 1)
)

= T(n+1
2 ).

Therefore T3 ≈ T(n+1
2 ) is a strong deformation retract of F2

(∨n+1
i=1 i

)
.

�

Notice that if A is a deformation retract of X, then A has the same homo-
topy type that X. Thus, their homotopy, homology and cohomology groups are
isomorphic, respectively. Thus we have the results below.

Applying Theorem 3.3, Theorem 4.2 and Theorem 5.3, we have the following
theorem.

Theorem 5.4. Let G be a finite graph, then

π1

(
F2(G)

) ∼= Zr,
where r = 1− |V (G)|+ |E(G)|.

Directly from the previous result, we have the following corollary.

Corollary 5.5. Let G be a finite graph. Then G is a tree if and only if

π1

(
F2(G)

)
= 0.
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Applying Theorem 4.3 and Theorem 5.3, we have the following.

Theorem 5.6. Let G be a finite graph. The homology groups of F2(G) with
coefficients in Z are given by

Hq

(
F2(G);Z

)
=


Z if q = 0,
Zr if q = 1,

Z(r
2) if q = 2,

0 if q ≥ 3.

where r = 1− |V (G)|+ |E(G)|.

Also we have the following consequence of Theorem 5.3.

Theorem 5.7. Let G be a finite graph, then the Euler characteristic of F2(G) is

χ
(
F2(G)

)
=
r2 − 3r + 2

2

where r = 1− |V (G)|+ |E(G)|.

Applying Theorem 4.4 and Theorem 5.3, we have the following.

Theorem 5.8. Let G be a finite graph, let r = 1 − |V (G)| + |E(G)|. Then
the Euler characteristic of F2(G) belongs to the set of the triangular numbers, if
r ≥ 2. For the case r = 1, χ

(
F2(G)

)
= 0.

Finally, applying Theorem 4.7 and Theorem 5.3, we can state.

Theorem 5.9. Let G be a finite graph. The cohomology groups of F2(G) with
coefficients in Z are

Hq
(
F2(G);Z

)
=


Z if q = 0,
Zr if q = 1,

Z(r
2) if q = 2,

0 if q ≥ 3.

where r = 1− |V (G)|+ |E(G)|.
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E-mail address: jgao@uaemex.mx; calfredo420@gmail.com; eca@uaemex.mx;

eulerubi@yahoo.com.mx.


	1. Introduction
	2. Preliminaries
	3. Classification
	4. Binomial Torus
	5. Homology and Cohomology of the second symmetric product of finite graphs
	References

