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ABSTRACT. This paper studies a minimizing problem subject to a control dy-
namical system involving two differential inclusions driven by maximal mono-
tone operators and an integral perturbation. First, an existence result, for a
mixed partially bounded variation continuous differential system, is obtained
via a discretization scheme (in the context of Hilbert spaces). The latter per-
mits us to deduce the well-posedness of the control dynamical system under
consideration. Finally, under suitable assumptions on the sets of control maps
acting in both the state of the operators and the time-variables of the pertur-
bations, the optimality result is proved.

1. INTRODUCTION AND BACKGROUND MATERIAL

We will continue, in this paper, the study begun in the recent contribution
[28] regarding a class of dynamical systems involving differential inclusions with
maximal monotone operators. Our main concern is to deal with the dynami-
cal system proposed in the perspectives of [28]. The first-order mixed partially
bounded variation continuous (BVC shortly) differential system associated to p
to be investigated here, is

du( t) € Bi(t)u(t) + / 1(t, s, 2(s),u(s))dp(s) dp —a.e. t € I :=[0,T],

dp (1.1)
— &(t) € Ba(t)x(t) + fg(t x(t),u(t)) ae.tel,

(u(0),2(0)) = (uo, z0) € D (B1(0)) x D (B1(0)),
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where H is a real separable Hilbert space and p : I — [0,4+00] is a continuous
nondecreasing map on I. The operators Bi(t) : D(By(t)) ¢ H — 2% and
By(t) : D(By(t)) € H — 2% are maximal monotone with domains denoted by
D (Bi(t)) and D (Bsy(t)), respectively, for each t € I. The dependence t — By (t)
(resp., t — Bs(t)) is BVC (resp., absolutely continuous) on I with respect to the
pseudo-distance. The perturbations f; : IXIxHXxH — Hand fo : IXxHXxH —
H are single-valued maps.

The first novelty of our contribution is that we mix two differential inclusions
involving maximal monotones operators such that a density with respect to dp
(p(+) is a bounded continuous map) is taken in the first-one, while the deriva-
tive in the second-one is taken with respect to the Lebesgue measure, with the
introduction of an integral perturbation in the new system.

Let us stress that the dynamical system (1.1) cannot be reduced to one (only)
differential inclusion formulated by

—%(t) € BOV(H) +h(t, V(1) du—ae. tel
V(t) e D(B(t)), tel,

V(0) = (ug, ) € D (B(0)),

by finding a time-dependent maximal monotone operator B(t), du = dt + dp,
and a suitable perturbation A(-,-). In the current situation, it is not possible to
apply the result in [3]. So, we proceed via a discretization method, by proving
the convergence of the approximate solutions (u,,x,), to the solution (u,z) of
the original system (1.1).

Recent developments on dynamical systems with two first-order differential
inclusions governed by maximal monotone operators or sweeping processes or
subdifferentials have occurred in numerous papers; see for instance [2, 7, 14, 23
24, 26, 28, 29], and those on differential inclusions with integral perturbations
can be found in, for example, [8, 9, 11, 17, 18, 22].

Our second topic is motivated by the recent study in [28, Theorem 5.2], concern-
ing a minimization problem over the solution set of a dynamical system involving
maximal monotone operators, where the control maps act only on the single-
valued perturbations. Also, we are inspired by [27, Theorem 3.3], regarding an
optimization problem subject to a differential inclusion with maximal monotone
operators, where the control maps act only in the state of the operators. We
investigate here optimal solutions to the following problem:

min _ p(uy (1), z,.(T)),

(y,2)EYXZ

where ¢ : H x H — R is lower semi-continuous, ); and Z; are suitable sets
(i =1,2), and (uy,., T, .) is the unique solution associated to the controls y, z of
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the following dynamical system:

( t

—u(t) € By(t,yi(t))u(t) + / fi(t, s, x(s),u(s), z1(s))ds ae. t €,
(

(
—&(t) € Bz tya(t))z(t) + folt, x(t), u(t), 22(t)) ae. tel,
,42(0)), (1.2)
=2 X 2,
= V1 X Vs,
o, x9) € D (B1(0,15)) x D (B2(0,3)).-

—

The second novelty in the present work is that, in the minimization problem
subject to the dynamical system, it is considered controls acting in both the state
of the operators and the perturbations.

Let us point out that optimal control of systems driven by ordinary differ-
ential equations with nonlinear differential inclusions have been investigated in
the scientific literature; see, for example, [1, 10, 15], among others. Sweeping
processes (or differential inclusions governed by maximal monotone operators)
involving control actions and optimization have been discussed also; see, for ex-
ample, [5, 6, 13, 16, 19, 20, 21], and the references therein.

The article consists of three sections. After recalling some basic notations,
definitions, and background material needed in our development, our main exis-
tence result concerning the dynamical system (1.1) is proved in the next section,
using a discretization method. The last section is dedicated to the study of the
minimization problem above.

Now, we recall the basic notations needed in what follows.

Let H be a real separable Hilbert space whose inner product is denoted by (-, -)
and its associated norm || - ||. Denote by By the closed unit ball of H and by
B [ug, L] the closed ball of center uy and radius L.
Given an interval [ :=[0,7] (T > 0) of R, let C({, H) be the space of continuous
maps u : [ — H, endowed with the norm of uniform convergence on I: ||ul|o =
sup [|u(t)]-
tel
Let LP(I, H) for p € [1,400| (resp., p = +00), be the space of measurable maps
u: I — H such that [, |lu(t)||Pdt < +oo (resp., which are essentially bounded)
endowed with the usual norm ||ul| e,y = (f; |lu(t) |pdt , 1 <p <40 (resp.,
endowed with the usual essential supremum norm || || e (s, H)). By WY2(I, H), we
denote the space of absolutely continuous functions from I to H with derivatives
in L?(I, H).

Let us summarize some properties of maximal monotone operators. Let B :

D(B) C H — 2% be a set-valued operator whose domain, range, and graph are
defined by

D(B)={u€ H: Bu#0},
R(B) ={v € H: thereexists u€ D(B), v € Bu} =U{Bu: ueD(B)},
Gr(B) ={(u,v) e Hx H: ue D(B), v € Bu}.



ON A CONTROL DYNAMICAL SYSTEM 179

Definition 1.1. [12] The operator B : D(B) C H — 2 is said to be monotone if
(v1 — 9, u; —ug) > 0 whenever (u;,v;) € Gr(B), i = 1,2. It is maximal monotone
if its graph could not be contained strictly in the graph of any other monotone
operator. In this case, for all p > 0, R(Ig + uB) = H, where Iy denotes the
identity map of H.

Proposition 1.2. [1] If B is a mazimal monotone operator, then, for every
u € D(B), Bu is nonempty, closed, and conver. Moreover, the projection of the
origin onto Bu, B°(u) exists and is unique.

Definition 1.3. [12] For x> 0, we define the resolvent and the Yosida approxi-
mation of B, respectively, by J = (I + uB) ™' and B, = i (Ig —J2).
Proposition 1.4. [1] Both operators Jf and B,, are single-valued and defined on
the whole space H, and one has

qu € D(B) and B,(u) € B(qu) for every u € H, (1.3)
IBu(w)l| < [ B°(w)|| for every u € D (B).

We recall now the definition of the pseudo-distance between two maximal
monotone operators.

Definition 1.5. [30] Let By : D(B;) C H — 2% and By : D(By) C H — 28 be
two maximal monotone operators. Then we denote by dis (B, B2) the pseudo-
distance between B; and Bs defined by

dis (By, Bs) = sup { (o = vz, up — ) (ug,v1) € Gr(By), (uz,vs) € GT(BQ)} .

L+ foafl + ozl
Remark 1.6. Observe that dis (By, Bs) € [0, +00], dis (B, By) = dis (By, By) and
dis (B1, Bs) = 0 if and only if By = Bs.
Lemma 1.7. [3] For any nonnegative real number i, one has

dis (uB, uB2) < max{1, u}dis (By, By). (1.4)

Let us recall some useful lemmas.

Lemma 1.8. [25] Let B be a mazimal monotone operator of H. If u € D (B)
and v € H are such that

(B'w —v,w—u) >0 for allw € D (B),
then u € D (B) and v € Bu.

Lemma 1.9. [25] Let B,, (n € N) and B be mazimal monotone operators of
H such that dis (B, B) — 0. Suppose also that u,, € D (By,) with u, — u and
Uy € Bpuy, with v, — v weakly for some u,v € H. Then, uw € D (B) and v € Bu.

Lemma 1.10. [25] Let By, By be mazimal monotone operators of H. Then,
(1) for w >0 and u € D (By)

ot — T2 ()| < pl BY )] + dis (B, Ba) + /(1 + [ Bul)dis (By, B):
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(2) for u >0 and u,v € H
17,7 (w) = T )] < [lu—vll.
Lemma 1.11. [25] Let B,, (n € N) and B be mazimal monotone operators of H

such that dis (B, B) — 0 and || Bul| < ¢(1+ ||lul|) for some ¢ >0, alln € N and
u € D(B,). Then, for every w € D (B), there exists a sequence (w,) such that

w, €D (B,), w, —w and B'w, — B'w.
The discrete version of Gronwall’s lemma is given as follows.

Lemma 1.12. [25] Let a > 0. Let (7;) and (n;) be sequences of nonnegative real
numbers such that

Niv1 < a+ (Z Yeme) fori € N*.
k=0
Then, one has

Nit1 < anp(Z ) forie N*.
k=0

To close this section, recall the following Gronwall-like differential inequality.

Lemma 1.13. [9] Let v : [To,T] — R be a nonnegative absolutely continuous
function and let hy, he,g : [To,T] — Ry be nonnegative integrable functions.
Suppose for some € > 0

0(t) < g(t) + e + hi(t)v(t) + ha(t)(v(t))? / (U(s))%ds a.e. t € [To, 7.

To

Then, for all t € [Ty, T], one has

exp </T:(h(s) + 1)ds) + % /Tt exp </:(h(r) + 1)dp> ds
+ 2{(/; o(s)ds +a)é _chexp </T:(h(7") + 1)@)}
+ 2/; (h(s) + 1) exp (/:(h(r) + 1)d,0) (/T:g(r)dp—i— g) s

where h(t) = max (hl(t) hQ(t)) ae. t € [T, T).

[NIE
N[

(v(t)) <(u(Tp) +¢)

2 0 2

2. MAIN RESULT

A solution to problem (1.1) is understood as follows. A couple (u,z) : I —
H x H is a solution to (1.1) if and only if u is BVC and z is absolutely continuous
satisfying (1.1). In the sequel, we just say a measurable map. The reader will
easily identify which type it is (Lebesgue or Borel) from the context.

Let us prove our existence result regarding (1.1).

Theorem 2.1. Assume that for any t € I, By(t) : D(By(t)) € H — 27 is a
mazimal monotone operator satisfying the following conditions:
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(Hy) There exists a function p : I — [0,+00] that is continuous on I and
nondecreasing with p(T) < +o0, p(0) =0 such that

dis (By(t), B1(s)) < |p(t) — p(s)|, forallt,s € I.
(Hs) There exists a nonnegative real constant ¢ such that

|BY(t)w]| < e(1 + ||w|)) for t € I, w € D (By(t)).
(H3) The set D (By(t)) is relatively ball-compact for each t € I.

Assume that for any t € I, Ba(t) : D (Ba(t)) C H — 27 is a mazimal monotone
operator satisfying the following conditions:

(H}) There exists a function « € WH2(I,R) that is nonnegative on [0,T[ and
nondecreasing with o(T) < +o0, a(0) = 0, such that
dis (Bsy(t), Ba(s)) < |a(t) — a(s)|, forallt,s e I.
(H)) There exists a nonnegative real constant d such that
| BY(t)w| < d(1+ ||w|]) for t € I, w € D (By(t)).
(H%) The set D (Ba(t)) is relatively ball-compact for each t € 1.
Let fi: I xIx Hx H— H be a map such that
(1) the map fi(-,-,u,v) is measurable on I x I for each (u,v) € H x H and
the map fi(t,s,-,-) is continuous for each (t,s) € I x I,
(17) there exists a nonnegative real constant m such that
| f1(t,s,u,v)|| < m(l+ ||u||+ [|v||) for all (¢,s,u,v) €I xIx HxH. (2.1)
Let fo: I x Hx H— H be a map such that

(7) the map fo(-,u,v) is measurable on I for each (u,v) € H x H and the
map fo(t,-,-) is continuous for each t € I,
(jj) there exists a nonnegative real constant | such that

| fo(t, u, v)|| <UL+ ||ul] + ||v||) for all (t,u,v) € I x H x H. (2.2)

Then, there ezist a solution (u,z): I — H x H to the first-order mized partially

BVC differential system associated to p, namely (1.1) and nonnegative real con-

stants £ and k depending on ¢, d, m, I, o(T), p(T), ||zol|, ||uol|. Moreover, one
du

has
‘ dp

Proof. We proceed by a discretization approach.
Part 1: Let us define a subdivision of the interval I by

(t)H <k, |E()] < E(1+a(t), foranyte I, (2.3)

O=ty <ty <--- <ty <tiy,<---<t,=T.
For every n > 1and i =0,1,...,n — 1, set
Ay =t =1, oy =a(tyy) —aty),  pi = p(ti) — p(t7), (2.4)
and suppose that
AP < A?+1’ af <afyy, pp < P?+1 <¢, and 5?—&—1 = A?—l—l +ai, < €, (2.5)
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where €, = @, and the map ¢ is defined by 6(¢t) =t+a(t), t € 1, s, = @. We
remark that ¢,,€, — 0 as n — +oc.
Put zf = o, uj = up. Set fori =0,...,n—1

tn .
n _ Jn n i+l N,
Uiy = JBl,p;LH (Uz —Jo 9 (T>d,0(7')),
t
n  _ Jn n __ i n ,mn
Tigr = JBz,A?H L tn fo(r, @ ui)dr |,

where

-1
" B1(t44) n n

JBl,prL = Jpnl = \1g+ pi+1B1<ti+1> )

141 i+1 (2 6)

-1
Ba(t? ) n
JEQ:A?H - JA;H = (IH + A?-l—lB?(ti-l-l)) )

with ¢™0(7) = [ fi(7, s, x5, uf)dp(s), 7 € 0,47 and for i = 1,...,n — 1, the
map ¢"* is defined by

i—1 tn -
. Jj+1
gl (T) = E /t" fl(T,s,x?,u?)dp(s) +/tn filr, s, aful)dp(s), 1€ [t ]
J (3

=0
(2.7)
Then, note from (2.1), (2.4), and (2.7) that for each 7 € [t} ¢} ]
lg™ (Il < D mpfa (L + [l27 ] + lluf ). (2.8)
=0
Combining (1.3) with (2.6), one gets
uiy € D(Bi(tlyy)), @iy € D(Ba(t)), (2.9)
iy )
a = [ () € o+ Bt (2.10)
i
t?—&-l
xy — fo(r, 2w )dr € o ) + A Bo(t] )y, . (2.11)
i

The two last inclusions may be written as follows:

U? —U:L 1 K n,i n n
S [T g et € B,
Pit1 Pit1 Jtp

tn
T, —xl 1 i+1
i+1 7 n .n n n
v ~Ar fo(r, 2}, wl)dr € By(t! )xi .

it+1 i+1 St
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Now, Lemma 1.10 yields

tiy
et =t = W, (= [ g o)) = ut
12

28] )
< W (= [ 0 0)) = T )
t
T3, e () — ]

/ lg™ () ldp(r) + pa | BY (| + dis (B (£2,.), Ba (7))

IA

2

+(p?+1<1 By )dis (B (77,), Blof?)))

Then, using (2.4), (2.8), assumptions (I;)-(H>) and the fact that \/ow < 3(v+w)
for nonnegative real constants v, w, gives

lufoy —ufll < pi Y pfam(L+ a7+ 1) + pfae(L+ [u]])
=0
P?ﬂ

M

n 3 n
(T4 (1 + [Jui]l) + §Pi+1

mply > pha (L |27+ [l]])
§=0

IA

3C T n n
‘|‘§Pi+1(1 + | ||) + 2071 (2.12)

In a similar way, from Lemma 1.10, one writes

s — 22 = B, (:c - / for ) >_xn|,
i

gr\Jg,A?H(xi— i "l atad)ar) = T, )]

T () — a2

IN

£
/ | fa(r, 2, wi) |dr + AT N By (87)a} || + dis (Ba(87y,), Ba(t7))
t

n
7

N[

+(AZH<1 B dis <Bz<t?+1>,32<t?>>)

Next, using (2.2), (2.4), assumptions (H/)-(H}) gives
[ =2l < AL+ ||+ [[d]]) + A d(@ + [27]) + ity

1
2

(Am a1+ ||x?||>>a?+1)
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Then, using the fact that \/ow < %(’U + w) for nonnegative real constants v, w,

gives
ity — 2l < AT+ [l |l + fluil]) + A d (1 + [27]])
in n 3 n
= (L d(+ 2 ]D)) + Sai
< ALl [+ ) + Ay =l
3d 1 3 .,
FALL (0 + o + 5) + o %it1y

along with (2.5), it results

iy =2l = Al C+ )l + el + 05 0+ =

On the one hand, one writes from (2.12)
gl < Nugll+ D Nl — ]

i j
< gl + Y mofa Y o (U4 g+ llugl)
7=0 k=0

3c n
+5 Zpﬁl (1+ [yl +2ij+1

7=0

Note that for j < i, one has

J i
S o a4 lupl) <7 ok (U4 gl + llug]),
k=0 k=0

it follows

il < 0 1 e ( k k
luipall < flug H+Zmp Z/) L+ [zl + [[ugl)

7=0
30 V23 n V23
T Zkarl(l + [Juzll) + ZZkarl

k=0 k=0

< lugll +mp(T) Y o (L4 [l + )
k=0

t5 Zkarl(l + [Jukll) + 2Zpk+17
k=0 k=0

= 2).

(2.13)
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along with (2.4) and (2.5), one obtains

%

n 3c n n 3c
il < uoll + (mp(T) + S )0 D (il + g ) + (mp(T) + = + 2)p(T)
k=0
< luoll +macu D (k| + llug ) +map(T), (2.14)

k=0

where my = mp(T) + % and my = mp(T) + % + 2.
On the other hand, from (2.13), one writes

i
a7l < lloll + D iy — a7
j=0

< lwoll + 1 D0 AT} + 1) + 1 67
j=0

=0
along with (2.4) and (2.5), it results

Izl < Nwoll + hew D (il + llugll) + Ld(T), (2.15)
k=0

Where11:l+37dandl2:l+%d+2.
Summing (2.14) and (2.15) member to member, one obtains

[l + N2 | < Hluoll +llzoll +120(T) +map(T) + (hen+masn) p (gl +[ugl]).
k=0

An application of Lemma 1.12 gives

%

[uia I+ Nzl < (HUOH+H:vo\|+lz<5(T)+mzp(T))eXp( (l16n+m1§n)).

k=0
Thus, using (2.5), one gets
[ || + '] < &, (2.16)
where k = | |luol| + ||zo|| + 10(T) + mgp(T)> exp(Lio(T) +myp(T)).
Combining (2.12) and (2.16), it follows
luiyy = wll < kapiyr, ]l <k, (2.17)

where k; = max{k, mi(1+ k) + 2}.
Now, coming back to (2.13) with the help of (2.16)

loity — 2l < €07, =l <€, (2.18)
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where & = max{k, l1k + l5}.
For any n > 1, define the sequences u,,,x, : [ — H by

) =+ P e [ o)) - [ ot

Pit1 n n
(2.19)
t—tr f
() = 2] + —— (xﬁ_l — +/ fa(r, 2l ul) d7'> / fo(r, 2l ul)d
Aerl 24
(2.20)

with u, (¢}, ) = u?,, and ,(t},) = «.;. Then, the functions u,,x, : I — H are
continuous.
Now, by (2.17), we have

n—1
sup var(uy(-)) = sup (Z [ II> < ky me < k1p(T),

n n =0 =0

and by (2.18), we have

supvar(z,(-)) = sup (Z [ H) < £251+1 < &(T

n

that is, u,, x, are BV maps for any n > 1.
From (2.19) and (2.20), for t € [t7,¢7.,[, ¢ = 0,1,...,n — 1 and z,(T) = x7,
u,(T) = u', one obtains

du” 1 n n e 7,0 n,1
) = (=t + [ @aln) ) = g0, 221
i+1 tn
. 1 " n t?-H
T (t) = A\ Tie1 T —|—/ fa(myal ul)dr | — fot, x), ul). (2.22)
i+1 2%
Then, (2.10) and (2.11) take the form
in 1) € Byt un(tlr) + g™ (1) d tel
B 0) € Bt Junltl) + 970 dp—aet €L o

—1y(t) € Bo(t} ) wn(ti ) + fo(t, 2}, u}) ae.tel.
Using (2.8) and (2.16), one writes
g™ (t)|] < mp(T)(1 + k), for each t € I. (2.24)
In view of (2.5), (2.17), (2.19), and (2.24), one has
lunl®) — a2l < Ny — ulll + 2mp(T)(1 + k)l
Py (k1 4 2mp(T)(1 + k)
Sn(k1 + 2mp(T)(1 + k)). (2.25)

Next, observe by (2.2) and (2.16) that
| f2(t, 2 ul)|| <114 k), foreach tel. (2.26)

INININ
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Then, combining (2.5), (2.18), (2.20), and (2.26), it follows

|2 (t) — '] [z — 27| +20(1 + k) AT
O (E+20(1+k))

en(€+20(1+ k). (2.27)

IN A IA

Fix ty € [t7, ¢, [ and ¢, € [t7,¢},,[ with i < j. Then, by (2.5), (2.17), and (2.25),

putting k3 = k1 + 2mp(T)(1 + k), one simplifies

[un(tr) = wn(t2) || < [Jun(ts) —wj || + [luf — || + [lw — un(t2)|l
< luj — [ + 2kss,
j—i—1

S Z ||u?+p+1 - u?—l—p” + 2]€3§n

j—i—1

< ki Z Pirpr1 T 2ksn

= kl (P ) + 2kd§n

<k <p > + 2kss,

ks (p plt2) + plts) — p(ty)> + kg,
<k (p + p(ti) — P(t?)) + 2ksc,
<k (p ) + k1piy + 2kss,,

<k (p ) (k1 + 2k3)sn

Proceeding similarly, using (2.5), (2.18), and (2.27), one gets for any n > 1 and
0<t, <t <T

[n(t1) — zn(t2) || < 5(5(151) - 5(t2)) +[6+ 206+ 20(1 + F))]en. (2.28)

Combining (2.17), (2.21), and (2.24), it follows for ¢t € I,

du 1
— )| < ury — ||+ 2mp(T)(1 + K
20| < ol =l + 2mo(r) 1+

<k +2mp(T)(1+ k) = k. (2.29)
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Combining (2.5), (2.18), (2.22), and (2.26), it results for ¢t € T
1

@Il < G llei — 27l + 201 + &) (2.30)
i+1
5n
<L 4 21(1+ k)
Az,
alt™, ) — a(tr
<¢l1+ oltiyy) = o) +2(1 4 k).
Ly — 4
By the absolute continuity of «(-), one has for a.e. ¢ €]t} 7, ],
a(t) = lim w Then, there is a Lebesgue measure null-set Y C I such
n—o0 i+l "
that for every ¢ € I\ 'Y, there exists 0, < 400 such that

[Ea ()] < 0. (2.31)
Observe by (2.18) that
t?+1
o —atll < [ o)

where the map 6 is defined by 6(t) = (1 + &(t)) for any ¢ € 1.
Next, using the Cauchy—Schwarz inequality, one writes
tn

i+1 1/2
Jatys = atll < (e = ([ )
i

Combining the last inequality with (2.30), noting that (v + w)? < 2(v* + w?) for
v,w € R, one gets

a2y = }j/ (1) 2dt

2
S [ (st et ) a
i=0

@

IA

i+1

/m((llm ; ”) +452(1+k:)2>dt

me — 7|
—{n

. /%e (s )ds+4l2(1+k)2T)

2(/0T925
([

| /\

=0
-1

3 s

| /\

PR R 1) )

IA

ds + 417 (1 + k)2T) < +o0.

Hence, one deduces that

(s)
62(s)ds + 412(1 + k)QTﬂ f b (232

mwm@ms<=[2
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Part 2: Put for any n > 1

{0 ifr=0,
Pnit) = tyift ettt forsomeie€ {0,1,...,n—1},

o)=L 0 ift =0,
St ift eyt ] forsomeid € {0,1,...,n—1}.

Then, one gets by (2.4)—(2.5)

nh_}rglo on(t) =t and nh_}rglo on(t) =1, (2.33)
rmxom%@»—mwmmw@»—mm)s;f+o%n—+w. (2.31)

Set forallt € [

hmmzlﬁmammm»%wwWM@,

and
hZ,n(t) = fo(t, 2n(on(t)), un(pn(t)))-
Hence, from (2.9) and (2.23) for each n € N*, one writes

du,,

- d—p(t) € Bi(¢n(t))un(dn(t)) + hin(t) dp—aet €I, (2.35)

— &y (t) € Ba(pn(t)2n(pn(t)) + hon(t) ae tel, (2.36)

Un(@n(t)) € D(Bi(dn(t))), zn(dn(t)) € D (Ba(¢n(?)))- (2.37)
Recall that x,, is absolutely continuous and by (2.32) for any t1,t € I, t; < t5

to
/ Tn(s)ds
t1

that is, {x,(-) : n € N*} is equicontinuous.

By (2.18), one has (z,(¢,(t))) C €By, forall t € I. Along with (2.37) and the
ball-compactness property in (Hj) entails that the set {x,(¢n(t)) : n € N*} is
relatively compact in H, for each t € I.

In view of (2.33) and (2.38), one deduces that for all ¢t € T

[0 (@n(t)) = 2n(®)]] = 0 and [[z,(n(t)) — zn(t)]| = 0 as n — oo.

< [ lslds < (- i (239

t1

|mwﬁ—%mm=]

Thus, the set {x,(t) : n € N*} is relatively compact in H, for each t € I. Ap-
plying Ascoli’s theorem, we can extract a subsequence of (z,(+)),, that uniformly
converges on I to some map z(-) € C(I, H) and satisfying x(0) = z,. Hence,

|2n(0n(t)) — 2(t)]] = 0 and ||z, (P, (1)) — x(t)]] — 0 as n — co. (2.39)

Observe that the sequence (i,) is bounded in L*(I, H) (see (2.32)). So, one easily
deduces from above that

(i,,) weakly converges to 4 in L*(I, H). (2.40)
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Now, remark by (2.29) that for any tl, toel, t;1 <ty

dun
Up(To) — Up(t = —_— s dp(s
[[un(t2) — un(te)] ]t1t2 H ]tm] i (s)
du,
< [ 52o)|dets) < xdplits b,
Jt1,t2] P

Then
[[un(t2) — un(t1)]| < H(p(b) - ﬂ(tl)) (2.41)

that is, {u,(-) : n € N*} is equicontinuous.

By (2.17), one has (u,(¢n(t))) C kiBy, forany t € I. Using then (2.37) and
the ball-compactness property in (Hs) entail that the set {u,(¢,(t)) : n € N*} is
relatively compact in H, for each t € I.

In view of (2.34) and (2.41), one deduces that for any s € I

[un(pn(s)) — un(s)|| = 0 and |Ju,(dn(s)) — un(s)|| — 0 as n — oco.

Thus, the set {u,(t) : n € N*} is relatively compact in H, for each t € I. Applying
Ascoli’s theorem, we can extract a subsequence of (u,(+)) that uniformly converges
on I to some map u(-) € C(I, H) and satisfying u(0) = ug. Hence,

|tn(0n(t)) — u(t)]] — 0 and ||u, (P, (1)) — u(t)]] — 0 as n — co. (2.42)

Observe from (2.29) that the sequence (ﬁ‘—;) is bounded in L*(I, H,dp). So, one
easily deduces from above that

d du
( CZ) ) weakly converges to o in L*(I,H,dp). (2.43)

From (2.39), (2.42) and the fact that fa(¢,-,-) is continuous for any ¢ € I
T [ falt, i (6), ta (2n(8))) = folt,a(8) u(t)) | =

then, using (2.26) and the Lebesgue dominated convergence theorem gives
T

i [ 1ot 20 (8), 0 (0 (0) = falt, (0) () Pt = 0.

n—oo

Then, one deduces

(fo( 2a(Pn (), un(pn(-)))) weakly converges in L*(I, H) to fo(-, z(-), u(-)).
(2.44)
From (2.39), (2.42) and the fact that fi(¢,s, -, ) is continuous for any (t,s) € I x [

T [ f1(2, 5, 20 (pn(s)), un(pn(5))) = fi(t, s, 2(s), uls))[| = 0,

then, using (2.1) and the fact that the sequences (u,) and (x,) are bounded (see
(2.16)), the Lebesgue dominated convergence theorem yields
t t

lim fl(t 8, Zn(Pn(8)), un(pn(s)))dp(s) = lim [ fi(t, s, 2(s), u(s))dp(s),

n—oo n—oo 0

that is,
hin(t) = h(t) asn — oo,
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where h is the map defined by

/ fi(t, s, z(s),u(s))dp(s) for all t € I.

Note that hy,(t) = ¢™'(t) for each ¢t € [t},t7 [, = 0,n — 1. Then, from (2.24),
one writes

[0 ()] < mp(T)(1 + F). (2.45)
The Lebesgue dominated convergence theorem then, gives
(h1,n(+)) converges in L*(I, H,dp) to h(-). (2.46)

Part 3: We are going to establish that

f;;()eBl Yu(t) + /flts:c u(s))dp(s) dp—ae.tel, (247
—i(t) € By(t)x(t) + folt, z(t),u(t)) ae. tel, (2.48)
u(t) € D(Bi(t)), () € D(B(t)) tel, (2.49)

u(0) = up € D (B41(0)), z(0) = zo € D (By(0)).
We show the first inclusion in (2.49). Recall that u, (¢, (t)) € D (Bi(¢n(t))) for
all t € I (see (2.37)). Combining (H;) and (2.34) yields

dis (Bi1(¢n(t)), B1(t)) < |p(¢n(t)) = p(t)] < 6n = 0 as n — oo. (2.50)

Remark in view of (Hy) and (2.17), that the sequence (BY(¢,(t))un(¢n(t))) is
bounded in H. Extracting a subsequence, the latter weakly converges to some
element in H. As the sequence (u,(¢,(t))) converges to u(t) in H (see (2.42)),
by the application of Lemma 1.9, it follows that u(t) € D (By(t)), t € I.

Next, we establish the second inclusion in (2.49).

Recall that x,(¢,(t)) € D (Bay(pn(t))) for all t € I (see (2.37)). Combining (H}),
the continuity of a(-) and (2.33) give

dis (Ba(n (1)), Ba(t)) < |a(en(t)) — at)] — 0asn — 0o, (2.51)

Remark in view of (Hj) and (2.18) that the sequence (BY(¢,(t))xn(¢n(t))) is
bounded in H. Extracting a subsequence, the latter weakly converges to some
element in H. As the sequence (z,(¢,(t))) converges to z(t) in H (see (2.39)),
by the application of Lemma 1.9, it results that z(¢) € D (By(t)), t € I.

Now, let us state (2.48). From (2.40) and (2.44), the sequence (&, + ha,,) weakly
converges in L*(I, H) to @(-) + fa(-,z(-),u(-)). Hence, one finds a sequence ()
such that for each j € N, n; € co{#; + ho;, © > j} and (n;) converges to
z(-) + fol-,2(-),u(-)) in L*(I, H). Extracting a subsequence not relabeled (7;)
converges to () + fo(,(+),u(-)) a.e. More precisely, one finds a subset X of
I (its Lebesgue measure equals zero), and a subsequence (j,) C N satisfying for
any t € I\ X, n;, (t) — a:(t) + fQ(t x(t),u(t)). Thus, fort € I\ X

B(t) + folt, x(t € (eo{ai(t) + haa(t), i > jp},
peN
that is, for any t € I\ X and any e € H

((t) + fot,z(t),u(t)),e) <limsup(i,(t) + haon,(t),e). (2.52)

n—oo
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Remember that z(t) € D (Bs(t)), for each t € I. To show that —z(t) € By(t)z(t)+
fa(t,z(t),u(t)) a.e. t € I, let us prove

(@(t) + folt,z(t),u(t)),z(t) —w) < (BY(t)w,w — x(t)) ae. tel,
for each w € D (By(t)), using Lemma 1.8.
Let w € D (Bx(t)). Let us use Lemma 1.11 with maximal monotone operators
By(¢pn(t)) and By(t) verifying (2.51) with w,, € D (Ba(dn(t)))
w, — w and By (¢, (t))w, — BY(t)w. (2.53)

Let (2.36) be satisfied for each n > 1 on I\ X,, (where X,, is a Lebesgue null
subset of ). As By(t) is monotone for each ¢t € I, then one writes

(@0 (t) + hon(t), 2 (dn(t)) — wy) < <Bg(¢n<t)>wm Wn, — T (Pn(t)))- (2.54)
From (2.26), (2.31), and (2.54), one obtains for t € I\ (|J X,, UX UY),

(0 (t) + hon(t), 2(t) —w) = (@n(t) + hon(t), 2n(Pn(t)) — wn)
(@ (t) + hon(t), (2(t) — 20 (dn(1))) — (0 — wn))
< <Bg(¢n<t))wm Wy, — Tn(Pn(t)))
o+ 11+ E))([2n(Pn(t) — 2@ + lJwn — wl]).
The convergence modes in (2.39) and (2.53) yield
limsup(,,(t) + ho,n(t), () — w) < (By(t)w,w — x(t)).

n—oo

Coming back to (2.52), it results
(@(t) + fo(t, 2(t),u(t)), 2(t) — w) < (BYt)w,w —x(t)) ae tel.

The differential inclusion (2.48) is then proved.

Now, let us state (2.47). From (2.43) and (2.46), it results that (ﬁ‘—;—l—hl,n) weakly

converges in L?(I, H,dp) to le—z(-) + h(-). Hence, one finds a sequence ((;) such

that for each j € N, (; € co{cf;:j +hy4, @ > g} and (¢;) converges to ‘;—Z(-)%—h(-) in
L*(1, H,dp). Extracting a subsequence not relabeled (;) converges to Z—Z(~) +h(-)
dp a.e. More precisely, one finds a subset S of I (its dp-measure equals zero),
and a subsequence (j,) C N satisfying for any t € I\ S, ({j,(t)) converges to
Z—z(t) + h(t). Hence, for t € I'\ S
du _
d—p(t) +h(t) € (o

peN

dui
dp

(t) + hl,i(t)v i 2 jp}7

that is, for any t € I\ S and any e € H
du du
—(t) + h(t),e) < limsup(——(t) + hin(t),e). 2.55
(0)+ bio)€) < limsup( T2 (0) + o). (259
Remember that u(t) € D (By(t)), for each t € I. To show that _Z_Z(t) €
By (t)u(t) + h(t) dp-a.e. t € I, let us prove that
du

(d—p(t) + h(t),u(t) —w) < (BY(t)w,w —u(t)) dp—ae.tel,
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for each w € D (Bj(t)), using Lemma 1.8.
Let w € D (By(t)). Let us use Lemma 1.11 with maximal monotone operators

Bi(¢,(t)) and By(t) verifying (2.50) with w,, € D (B1(¢,(t)))
w, — w and B} (¢, (t))w, — B} (t)w. (2.56)

Let (2.35) be satisfied for each n > 1 on I\ S,, (where S, is a dp-null subset of
I). As By(t) is monotone for each ¢ € I, then one writes

<%<t> (), tn(n(6)) — ) < (BYon(t))t0ms 0 — wn(a(0))).  (257)
From (2.29), (2.45), and (2.57), one gets for t € I\ (|J S, US),
du,,
O RURTOR
- <‘Zi;<t> T hn(t), n(n(£)) — w2
+<%<t> T n(®), (ult) — un(Ba(8))) — (w — w,))

< (B (0n(1)wn, wn — un(¢a(t)))
+(5 +mp(T)(L+ k) (lun(én(t)) — w(®)]| + lwn — w]]).
The convergence modes in (2.42) and (2.56) yield

lim sup( 22 (1) + hyn(8) ult) — w) < (BY(E)w, w — u(t)).

noeo - dp
Coming back to (2.55), it follows
<Z—Z(t) + h(t),u(t) —w) < (BY(t)w,w —u(t)) dp—ae.tel.

The differential inclusion (2.47) is then proved.

Thus, the problem (1.1) admits a solution (u,z): I — H x H.

In view of (2.41), respectively, (2.28), letting n — oo yields for 0 < t; <ty < T,
[ultz) —u(t)]| < w(p(t2) — p(tr)),
[2(t2) — z(ta) ]| < &(t2 — 1 + alty) — alt)).

The estimates in (2.3) are satisfied. This ends the proof of our theorem. O]

We close this section by adding extra conditions to ensure the uniqueness of
the solution of a related dynamical system to (1.1).

Corollary 2.2. Assume that for any t € I, By(t) : D(By(t)) C H — 2% is a
mazximal monotone operator satisfying (Hs)-(Hs). Suppose moreover that
(HY) there exists a real nonnegative constant B > 0 such that

dis (Bi(t), Bi(s)) < B(t —s) for 0 <s<t<T.
Assume that for any t € I, By(t) : D (Ba(t)) C H — 27 is a mazimal monotone
operator satisfying (Hy)-(H5)-(HY).
Let fi : I xI x Hx H — H be a map such that assumptions (i)-(ii) hold
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true. Suppose moreover that for every n > 0, there exists a nonnegative function
¥y(-) € L*(I,R) such that for all t,s € I and any uy,uz,v1,v2 € Byl0,7], one
has

1Fr(#s s, un, 01) = fu(t s, w9, 02) | < 0y (8) ([un — waf| + flor = wal) . (2.58)

Let fo : IXHxH — H be a map such that assumptions (j)-(jj) hold true. Suppose
moreover that for everyn > 0, there exists a nonnegative function o,(-) € L*(I,R)
such that for all t € I and any uy,usz,v1,v2 € Bg[0,n], one has

[fa(ts urs 00) = fo(t, ua, va) || < o(t) ([lur — ol + [lor = va]]). (2.59)

Then, there exists a unique solution (u,x) : I — H x H (u is Lipschitz-continuous
and x is absolutely continuous) to the following problem:
t

—a(t) € By(t)u(t) + / \(t, s, 2(s),u(s))ds  ae.tel,
(

_i(t) € Ba()alt) + Rt 2(t), u(t)) ae.tel, (2.60)
(u(0),2(0)) = (uo, o) € D (B1(0)) x D (B2(0)),
with
[l < Brr, 40 < €0+ o) foranyte T, (261)

for nonnegative real constants § and k1 depending on ¢, d, m, I, a(T), T, ||zo||,
[[uol|-

Proof. Existence of the solution: If 5 < 1, then by (H/) one gets
dis (By(t), Bi(s)) <t—s, for 0<s<t<T.

By considering p(t) = t (dp = dt), then assumption (H;) holds true. Hence,
Theorem 2.1 guarantees a solution to our problem (2.60).
If 8 > 1, then combining (H{') with the property (1.4), one obtains for 0 < s <

t=t 1 1
dis (EBl(t), BBl(s)) < dis (By(t), Bi(s)) < B(t — s).

By considering p(t) = St (dp(t) = pdt) to the maximal monotone operator A(t) =
%Bl (t) for all t € I, then assumption (H;) holds true. Define the perturbation h

by h(t, s, z,u) = éfl(t, s, x,u) for all (t,s,x,u) € I x I x H x H, then, Theorem
2.1 guarantees a solution to the problem

du 1 1 [t1
~ht) € GBalult) + / Sh(ts2(9)u)dpls) dp—ac.tel,

—i(t) € Ba(t)a(t) + folt, 2(t), u(t)) ae tel,
(u(0),2(0)) = (uo,x0) € D (B1(0)) x D (B2(0)).

The first differential inclusion in the latter system may be rewritten as follows:

du , dt
—W)dp()%&( 5/51‘“175856() u(s))dp(s) dp—ae tel,
that is,

—u(t) € Bi(t) /fltsx u(s))ds a.e t € 1.
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This ensures the associated existence result to our problem (2.60).
Furthermore, coming back to (2.3), one deduces the estimates in (2.61).
Uniqueness of the solution: Let (uj,x1), (uz,x2) be two solutions to the
coupled system (2.60). Since the solution is bounded, then, there exists 1 such
that ||u;(t)|| <nand [|z;(t)]| <nforalltel, i=1,2.
Now, Bj(t) is monotone, for each ¢ € I, ensures that

(U (t) = 1a(t), us(t) — ua(t)) <

</Otf1<t,s,x1($),u1(s))ds—/Otfl(t,s,xg(s),ug(s))ds,ug(t)—ul(t)>. (2.62)

Moreover, note that v +w < v/2(v? + wQ)% for v,w > 0 along with the Lipschitz
behavior of f; in (2.58), one writes

([ ttsins)mends = [ Alessals)ns)ds. uat) )
< ( / il a(s) () - il s,x2<s>,u2<s>>\rds) s () = wa(®) |
< Gg(0) [1n (1) = w2 ()] / " (lua(s) = wa)l + llea(s) - aa()] )
< V300 () — (o)) [ (lua(s) = @I + lea(s) — aa(o)?) s,

Observe that
Jur (t) = ua ()| < ([lua (t) = ua(t)]* + [[21(8) — 22(H)[1*)

since v < (v? + wZ)% for v > 0, w € R. Then, define the map y by

N

y(t) = ||ur(t) — ue(t)||* + |21 (t) — 22(t)||?, for any tel. (2.63)

Then, it follows

</Ot fi(t, s, 21(8), ur(s))ds— /Ot Filt, 8, 22(8), us(s))ds, us(t) — ul(t)>

<VELWO0)! [t (@6
Hence, combining (2.62)-(2.64) yields
1d ) . .
§E||U1(t) —up ()| = (wa(t) — ua(t), i (t) — da(t))
< Va0 [ (o) ks (2.65)

Now, using the fact that w?+wz < %(w2+z2) for each w, z € Ry and the Lipschitz
behavior of fy in (2.59), one finds a nonnegative function o,(-) € L*(I,R) such
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that fo(t,-,-) is 0, (t)-Lipschitz on By[0,n] x Bx[0,n) for each t € I. Hence
(altsaa(8), (1) = folt,a(t), ualt)), @(t) = a1 (1)
< 0y(®)(Jlr (1) = wa(®) | + o1 (1) = w2(0)]) 1) = 22(0)]
= 0y(0)(Jlaa(8) = 22O + ea(8) = wa(®)llz2 (1) = w2(0)])

3o, (t
"0 (s () — a2 + o (6) — a0 ). (2.66)
As Bs(t) is monotone for each t € I, one writes

(T1(t) = 22(t), 1 (t) —22(t)) < (folt, 21(t), ur () — folt, 22(t), ua(t)), v2(t) —21(2)).
(2.67)

<

Hence, combining (2.63), (2.66)-(2.67) yields

L () — a0 = (@1 (0) — alt) 1 (8) — o)) < 272

From (2.65) and (2.68), one obtains
G(t) < 30, (D)y(t) + 2v20, () (y(1))? / (y(s))2ds.

Recall that ||u1(0) —ug(0)|| = 0 and ||z1(0) — z2(0)|| = 0 and by assumption both
¥, () and o,(-) are nonnegative L?(I,R)-functions. Thanks to Lemma 1.13, it
results that (uy,x1) = (u2,z2) and the solution is unique. O

y(®).  (2.68)

3. A PROBLEM IN CONTROL THEORY

In the reminder of this section, let Z;, Z; be convex compact in C(I, H). Denote
by Vi, Vs the sets defined by

t
Vi ={y €C(I,H), yl(t):y(l)—l—/ U1(s)ds forallt eI, g(t) € T},
0
and
t
Vo= {i €CULH), () =3+ [ ia(s)ds forall te I, ga(t) € T,
0

where I'y, I'y are convex compact subsets of H.
It is clear that the sets }; and ) are convex compact in C(I, H).

Let us begin this section by establishing the existence result regarding problem
(1.2).

Theorem 3.1. Let for (t,x) € I x H, By(t,z) : D(By(t,x)) C H — 2 be a
maximal monotone operator such that
(Hp,) there exist Ay, > 0 such that

dis (Bi(t,v), Bi(s,w)) < B(t—s)+ A ||[v—w||, forallt,s € I(s <t), forallv,w € H;
(Hp,) there exists a nonnegative real constant ¢1 such that

||B?(t,v)w\| < (1+||v]] + ||w|) for t €I, ve H weD(Bi(t,v));
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(H},) for any bounded subset X C H, the set D (By(I x X)) is relatively ball-
compact.

Let for (t,x) € I x H, By(t,x) : D (By(t,x)) C H — 2% be a mazimal monotone
operator such that
(Hp,) there exist Ay > 0, and a function o« € W'(I,R), which is nonnegative
on [0, T[ and nondecreasing with a(T) < +o00 and «(0) = 0 such that
dis (By(t,v), Ba(s, w)) < |a(t)—a(s)[+Xa|lv—wl[, forallt,s €1, forallv,w € H;
(H},) there exists a nonnegative real constant dy such that
| BS(t, v)w|| < dy(1+ ||v]| + ||w|]) for t €I, veE H, we D (By(t,v));
(Hg,) for any bounded subset X C H, the set D (By(I x X)) is relatively ball-
compact.
Let fi : I x I x Hx Hx H — H be a map such that
(hy,) the map fi(-,-,u,v,w) is measurable on I x I for each (u,v,w) € H x
H x H, and fi(t,s,-,-,-) is continuous for each (t,s) € I x I;
(h%,) there exists my > 0 such that
1162, 5,10, 0,0)[| < (Ll + ol ) for all (2, s, u,v, w) € IxTx Hx H H;
(3.1)
(hfcl) for every n > 0, there exists a nonnegative ﬁmctz’on ¥, () € L*(I,R) such
that for all t,s € I and any uy,us,v1,v2 € By[0,n] and w € H, one has

“fl(t’ SauhUl?w) - fl(t>37u27v2vw)|| < 77/}77(25) (“ul - u2” + ”Ul - UQH) . (32)

Let fo : I x Hx Hx H— H be a map such that

(h}z) the map fo(-, u,v,w) is measurable on I for each (u,v,w) € H x H x H,
and fy(t,-, -, ") is continuous for each t € I;
(h3,) there ewists Iy > 0 such that

122, w, v, w)|| < L(T+{Jufl+[[o] +[w]]) for all (¢, u, v, w) € IxHXxHxH; (3.3)

(hfcz) for every n > 0, there exists a nonnegative function o,(-) € L*(I,R) such
that for all t € I and any uy, us, v1,vs € By[0,n] and w € H, one has

[ fat, ur, v1,w) = folt, ug, va, )| < oy (t) (lur — wal| + [lor — val]) - (3.4)

Then, there ezists a unique solution (u,z): I — H X H to the first-order system
(1.2), for any (y1,y2) € Y1 X, (21, 22) € Z1 X 25, and nonnegative real constants
& and ko depending on ca, da, my, by, 71, T2, T, Y (T), (T, ||zoll, ||uwol|, where
the maps v, and o are defined, for each t € I, by

%@F46+M&ﬁ,w@%=£0ﬂ@+Aﬂm@WM&

and
T

T
et I+ [ @), d=dia+ @+ [ a(s)ds)
0 0
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Moreover, one has
[a@)] < w2, 2] < &(1+72(t)), fortel, (3:5)
(where u is Lipschitz-continuous and x is absolutely continuous).

Proof. Fix (y1,y2) € V1 X Va. Then, define the maximal monotone operators AY'
A by

AT (t) = Ba(t,yi(t)), AP (t) = Ba(t,y2(t)), foreach t €.
Let s,t € I such that 0 < s <t < T, then one has from (Hp,)
dis (A7 (1), A{'(s)) < B(t — 5) + Millya(t) — v ()l

t
<[5+ Mln@lar

As y; € Yy, then, there is a nonnegative real constant $; such that ||y, (7)| < fi,
for each 7 € I. Then,

dis (AT (1), AT (s)) < n(t) = n(s),
where 71(+) is defined by

’}/1(15) = (ﬁ + )\161)25, forall t € I.
Similarly, using (Hp,), one has

dis (A3* (1), A" (s)) < [a(t) — al(s)] + Aallga(t) — v2(s)

< / (@(7) + Aa[lg2(T) )T = 72(t) — 72(s),

where y5(-) € WH2(I,R) is defined by

Ya(t) = /0 (&(s) + A\al|ge(s)]|)ds, forallt e I.

Moreover, by (H, ), one has
1A (Wwl| = IBY (¢, 91(8)w]l < ex(L + [lya (B[] + [Jw]])
< co(1 + [[wl]),
where ¢ = e1(1+ [[ydll + ;' [[§1(s) | ds)-
Similarly, by (Hp,), one has
1(A5*)° (B)wll = 1| B2 (¢, yo(t))w]| < du(1+ ly2(®)]] + Jwl])
< dy(1+ [Jwl)),
where dy = dy (1+ [[2]l + f; [|42(5)|ds).
Fix (21, 22) € Z1 X Z5. Then, define the maps fi.,,f2., by
fl,z1<t737uv /U) = fl(ta S,’LL,U,21<S)), f2,zg(t7uav) - fg(t,u,’l},ZQ(t)),
for any (t,s,u,v) € I x I x H x H.

Clearly, by assumptions (h}l) and (h}z), the required measurability and continu-
ity of fi., and f5 ., in Corollary 2.2 are fulfilled.
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Since Z, Z, are compact sets in C(I,H), thge exist nonnegative real constants
71,72 such that 2, € mBy and Z5 C mBy. Then by (3.1), (3.3), for all
(t,s,u,v) € I x I x Hx H one has
1f120 (8 8w, )| = Lf1(E 5,0, 0, 20(8) | < ma(L A+ [Jul] + vl + [[21(s)]])
< ma(1+ [Jul] 4 [v]]),

and

1f2,2 (8w, 0)[| = (| fo(t, w, 0, 25 () || < (1A [lul] + [Joff + [[22(£)]])
< (1A [lull + [Jvll),
for nonnegative real constants ms and Is.
Moreover, by (3.2) and (3.4), for some 1 > 0, there exist two nonnegative func-
tions o, (+), ¥, () € L*(I,R) such that for all (¢,s) € I x I and any us, vy, uz, v €
By[0,7)], one has

Hfl,zl <t787u17U1) - fl,z1 <t787u271}2)’| = ||f1<t787u17vl721(8>) - fl(t7 S, U2, V2, ZI(S>>H
<y (8) (lur — wa|| + [lor = val]),

and

[ ot a1, 00) = fomy (b2, 02) | = [ folt s, 01, 2(8)) = falt, uz, v, 25(0))|
< oy(t)(lur — ua| + [[v1 — val]).

Then, all conditions of Corollary 2.2 are verified. The solution of problem (1.2)
exists and is unique. O

Now, we prove the existence of optimal solutions to our minimization problem.

Theorem 3.2. Assume that for any (t,z) € I x H, By(t,x) : D (By(t,z)) C H —
2" is a mazimal monotone operator verifying (Hp, )-(Hp, )-(H3,). Assume that
for any (t,x) € I x H, By(t,z) : D (By(t,x)) C H — 2% is a mazimal monotone
operator verifying (Hp,)-(Hp,)-(Hg,).
Let fi: I x I x HxHxH — H be a map such that assumptions (h},)-(h%,)-
(h3,) hold true. Let fo : I x Hx H x H — H be a map such that assumptions
(hy,)-(h3,)-(h3,) hold true.

Let o : H x H — R be lower semi continuous.

Then, the minimization problem

i z T ) z T 9 36
(y’ﬁlgxzw(uy, (1), zy,-(T)) (3.6)

where (uy -, T, ) is the unique solution associated to the controls y, z to problem
(1.2), has an optimal solution.

Proof. First, note that the solution of problem (1.2) exists and is unique by
Theorem 3.1.
Let yn = (Y1, Y2,n) and z, = (214, 22,,) be minimizing sequences of problem
(3.6), that is,
lim o(un(T),2,(T)) = min _ @(uyw(T), 2pw(T))

n—00 (v,w)eYxZ
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where for each n, (u,, z,) is the unique solution to the following problem:

( t

— U (t) € Bi(t,y1.,(t))un(t) +/ fi(t, s, xn (), un(s), z1n(8))ds ae. t €1,
DEAG

(
() € Balt, yon(t)2n() + folt 2 (), un(t), 2am(t))  ace.t € 1T,

Zn = (Z1n, 220) € 2 = 21 X 2o,

Un = (Y1, Y2n) €Y = V1 X o,
| (un(0),2,(0)) = (o, x0) € D (B1(0,5)) x D (Ba(0,5)).

In view of (3.5), there exist w, T € WH*(I, H) such that

(u,) pointwise converges to u, (3.8)
(i1,) weakly converges in L*(I, H) to 1, (3.9)
and
(x,) pointwise converges to T, (3.10)
(i,,) weakly converges in L*(1, H) to T. (3.11)

Remember that Y, and ), are compact in C(I, H), extracting a subsequence
(keeping the same notation of each sequence), one assumes that

(y1.,) uniformly converges to 7, € Vi, (3.12)
(y2,n,) uniformly converges to g, € Vs. (3.13)

Since Z; and Z, are compact in C(I, H), extracting a subsequence (keeping the
same notation of each sequence), one assumes that

(21,,) uniformly converges to z; € Z, (3.14)
(22,,) uniformly converges to Zy € Zs. (3.15)
Let for any n and any t € I, hy,(t) = f(f fi(t, s, 2n(s), un(s), z1.0(s))ds. Since
fi(t,s,-,-,-) is continuous, then by (3.8), (3.10), and (3.14), one gets
fi(t, s, zn(s),un(s), z1.0(s)) = fi(t,s,@(s),u(s), Z1(s)) as n — oo.

Moreover, from (h% ) and the fact that the sequences (uy), (), and (z,) are
bounded in C(I, H), then the Lebesgue dominated convergence theorem gives

hin(t) = h(t), as n — oo,
with h(t) = [} fi(t,s,(s),u(s),Z1(s))ds, t € 1. Once more by (h7,) and the
boundedness of the sequences (u,), (z,) and (z1,), then
(hi,(-)) converges in L*(I, H) to h(-), (3.16)

using the Lebesgue dominated convergence theorem.
Thanks to (3.8), (3.10) and (3.15) and the continuity of fa(t,-,-,-) fora.e. t € I

fa(t, xn(t), un(t), 220 (t)) — fat,T(t),u(t), Z2(t)) as n — oo,

along with (h%,) and the fact that (), (u,) and (za,) are bounded, then the
Lebesgue dominated convergence theorem gives

(folts 20 (), un(+), 22.0(+))) converges in L*(I,H) to fo(-,7(-), (), Z2(+). (3.17)
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Now, since ¢ is lower semi-continuous, it results
lim inf (1, (T), (7)) > (a(T), 7(T)).
n—oo

Thus, one gets

inf (1), 200 (1)) = 9(@(T), (T)).

(v,w)eYXZ

Finally, let us verify that

—u(t) € Bi(t,g,(0)ut) + [ fi(t,s,@(s),u(s),zi(s))ds ae tel,

(
—3(t) € Byt To(D)T(t) + (), 7(t), 5(t) aetel,
= (7,(0),7,(0)). (3.18)
1,22) € Z1 X 2o,
) € V1 X Vs,

From (3.7) and the preceding convergence modes (see (3.8), (3.9), (3.10), (3.11),
(3.12), (3.13), (3.16) and (3.17)), we argue as in Part 3 of the proof of Theorem
2.1 to show the inclusions in (3.18).

As the solution of (3.18) is unique (see Theorem 3.1), one concludes that
(w,Z) = (ugz, vgz) is the unique solution to problem (1.2) where, ¥ = (¥, 7s,)
and Z = (Z1,Z2). The proof of the theorem is therefore finished. O
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