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POSNER’S FIRST THEOREM FOR PRIME MODULES
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Abstract. Let R be a ring, let M be a left R-module, and let τ : M → M and
δ : R → R be additive maps. We say that τ is a generalized derivation relative
to δ if τ(am) = aτ(m) + δ(a)m for all a ∈ R and m ∈ M . In this paper, we
provide a generalization of Posner’s first theorem to generalized derivations on
2-torsion free prime modules. We also obtain a result of this generalization in
connection with derivations acting on left ideals of prime rings. Moreover, we
extend some previous results related to Posner’s first theorem. Furthermore,
as an application of our main result, we examine Posner’s first theorem for
a certain class of derivations on trivial extension rings under some suitable
conditions.

1. Introduction

Throughout this paper, all rings are associative with unity and all modules
are unital. Let R be a ring. An additive mapping δ : R → R is said to be a
derivation if δ(ab) = δ(a)b+aδ(b) for all a, b ∈ R. Derivation is an important class
of maps by which one can study the structure of the rings. The product of two
derivations is not necessarily a derivation. Thus, the following question is worth
studying: If the multiplication of two derivations is again a derivation, what is
the structure of their multiplication derivations? Firstly, Posner [14] showed that
if the product of two derivations on a prime ring with characteristic other than
two is a derivation, then one of them should be zero. This result is known as the
Posner’s first theorem, which has already been generalized in several directions,
among which one can point to acting the derivations on one sided ideals. We
refer the reader to [1, 3, 8, 9] and the references therein for more details.
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Bres̆ar [2] has defined the concept of a generalized derivation as follows: An
additive mapping τ : R → R is called a generalized derivation if there exists a
derivation δ : R → R such that τ(ab) = τ(a)b+ aδ(b) for all a, b ∈ R. Obviously,
every derivation is a generalized derivation. Moreover, the generalized derivation
τ with δ = 0 covers the concept of left multiplier, that is, an additive map
τ : R → R satisfying τ(ab) = τ(a)b for all a, b ∈ R. Also, we can define left
generalized derivation by τ(ab) = aτ(b) + δ(a)b for all a, b ∈ R, which covers the
concepts of derivations and right multipliers both. Hvala [7] studied the Posner’s
first theorem for generalized derivations on 2-torsion free prime rings. Motivated
by the definition of generalized derivation on rings, in [5], generalized derivation
on left modules over a complex algebra has been defined as follows: Suppose that
A is a complex algebra and that M is a left A-module. A linear map τ : M → M
is called a generalized derivation relative to the linear derivation δ : A → A if

τ(am) = aτ(m) + δ(a)m (a ∈ A,m ∈ M). (1.1)

Some results on generalized derivations and special versions of Posner’s first the-
orem on prime modules can be found in [5].

In this paper, we generalize the definition of generalized derivation on modules
as follows: Let R be a ring, let M be a left R-module, and let δ : R → R be an
additive map. An additive map τ : M → M is called a generalized derivation
relative to δ if

τ(am) = aτ(m) + δ(a)m (a ∈ R,m ∈ M).

It is clear that if δ is a derivation, then the concepts of the generalized derivations
given above and the one given in (1.1) coincide. Moreover, if we consider R as a
left R-module and δ is a derivation on R, then τ is a generalized derivation on
R in the sense defined in [2]. So this definition actually generalizes the previous
definitions of generalized derivation. We state all of our results for left modules.
Right module analogues can be obtained with the same argument. The main
result of this paper is a generalization of Posner’s first theorem for generalized
derivations on 2-torsion free prime left modules. In fact, considering every left
ideal of R as a left R-module, by the main result of this paper, we will obtain
some results about Posner’s first theorem on left ideals of R. Also, we generalize
some previous results on the product of derivations on prime rings to the product
of generalized derivations on prime modules.

Noting that Posner’s first theorem, its generalizations, and the related results
are on prime rings, the question that naturally arises is how does the Posner’s first
theorem work for nonprime rings? Trivial extensions are examples of nonprime
rings. We investigate Posner’s first theorem for the derivations on trivial extension
rings under mild conditions, as an application of the main result of this paper.

This paper is organized as follows. In Sec 2, some necessary definitions and
preliminaries are provided. In Sec 3, we present the main result and some other
results related to the Posner’s first theorem on prime modules. The last section
is devoted to investigating the Posner’s first theorem on trivial extension rings.
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2. Preliminaries

From this point up to the last section, R is a unitary ring and M is a left
R-module. Let us first recall the definition of a generalized derivation.

Definition 2.1. Let δ : R → R be an additive map. An additive map τ : M → M
is called a generalized derivation relative to δ if the following identity holds:

τ(am) = aτ(m) + δ(a)m (a ∈ R,m ∈ M).

In the following, examples (i)-(iii) show that this definition extends some im-
portant classes of mappings, and the last one is a counterexample.

Example 2.2. (i) Let τ : M → M be an R-module homomorphism. Then
τ is a generalized derivation relative to the zero map.

(ii) Let δ : R → R be a derivation. Then δ is a generalized derivation relative
to itself.

(iii) Let a ∈ R. The additive map τa : M → M defined by τa(m) = am is a
generalized derivation relative to the inner derivation Ia : R → R, where
Ia(b) = ab− ba.

(iv) The following operation makes M into a left R×R-module:

(a, b)m = am (a, b ∈ R,m ∈ M).

Define τ : M → M by τ(m) = m and δ : R×R → R×R by δ(a, b) = (0, a).
The additive mapping τ is a generalized derivation relative to δ, but δ is
not a derivation on R×R.

Example 2.2(iv) shows that if τ is a generalized derivation relative to δ, then δ is
not necessarily a derivation. The following remark provides a sufficient condition
on M under which δ is a derivation.

Remark 2.3. Let τ : M → M be a generalized derivation relative to δ : R → R.
If M is faithful, that is,

lannRM = {r ∈ R : rM = (0)} = (0),

then δ is a derivation: Assume that r1, r2 ∈ R and m ∈ M . Then

τ(r1r2m) = r1r2τ(m) + δ(r1r2)m.

On the other hand,

τ(r1r2m) = r1τ(r2m) + δ(r1)r2m

= r1r2τ(m) + r1δ(r2)m+ δ(r1)r2m.

Comparing these two identities, we have

(δ(r1r2)− r1δ(r2)− δ(r1)r2)m = 0,

for all m ∈ M , concluding that δ is a derivation.

Recall that the ring of all R-module endomorphisms on M is denoted by
EndRM , and M is called 2-torsion free if 2m = 0 (m ∈ M) implies m = 0.
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Remark 2.4. The subset I = lannRM is an ideal of R, and if M is 2-torsion free,
then the quotient ring R/I is 2-torsion free: let a ∈ R be such that 2(a+ I) = I.
Hence 2a ∈ I and, for all m ∈ M , 2am = 0. Since M is 2-torsion free, we have
am = 0 for all m ∈ M , and hence a ∈ I, showing that R/I is 2-torsion free.

Let P be a submodule of M . Then the quotient
(P : M) = {a ∈ R : aM ⊆ P}

is an ideal of R. If P = (0), then obviously ((0) : M) = lannRM . More precisely,
we have

(P : M) = lannR(M/P ).

A proper submodule P of M is called a prime submodule if for every a ∈ R and
m ∈ M , the inclusion aRm ⊆ P implies that m ∈ P or a ∈ (P : M). We say
that M is a prime module if (0) is a prime submodule of M . If P is a prime
submodule of M , then (P : M) is a prime ideal of R. Furthermore, P is a prime
submodule of M if and only if M/P is prime as a left R-module. We refer the
reader to [11, 10, 12, 13, 15] for more information.

Let M be an R-bimodule. Then R×M is an abelian group, and together with
the product defined by

(a,m)(b, n) = (ab, an+mb) (a, b ∈ R, m, n ∈ M),

it is a ring with unity (1, 0), which is called the trivial extension of R by M and
denoted by T (R,M). Let I = (0)×M . Then I is an ideal of T (R,M) such that
I2 = (0). So T (R,M) is not a prime ring.

3. Generalized derivations on prime modules T ,A

In this section, we present the main results of this paper. Throughout this
section, R is a unitary ring and M is a left R-module.

The next theorem is a generalization of Posner’s first theorem for generalized
derivations on prime modules.

Theorem 3.1. Suppose that M is a 2-torsion free prime module. Let δ1, δ2 be
additive maps on R and let τ1, τ2 : M → M be generalized derivations relative to
δ1, δ2, respectively. Then τ1τ2 is a generalized derivation relative to the additive
map δ1δ2 if and only if one of the following conditions holds:

(i) τ1 = 0;
(ii) τ2 = 0;
(iii) τ1 ̸= 0, τ2 ̸= 0, and τ1, τ2 ∈ EndRM .

Proof. Let τ1τ2 be a generalized derivation relative to δ1δ2 and put I = lannRM .
Since M is a prime module, it follows that I is a prime ideal of R, and R/I is a
prime ring. Moreover, M is a left R/I-module by the following module action:

(a+ I)m = am (a ∈ R,m ∈ M).

Let a ∈ I. Then for all m ∈ M and i = 1, 2, we have
τi(am) = aτi(m) + δi(a)m.
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So δi(a)m = 0, and hence δi(I) ⊆ I. Define δ̃i : R/I → R/I, (i = 1, 2) by

δ̃i(a+ I) = δi(a) + I.

Since δi(I) ⊆ I, it follows that each δ̃i is well defined. Also, each δ̃i is an additive
map. Now, for i = 1, 2, we see that

τi((a+ I)m) = τi(am)

= aτi(m) + δi(a)m

= (a+ I)τi(m) + (δi(a) + I)m

= (a+ I)τi(m) + δ̃i(a+ I)m

for all a ∈ R and m ∈ M . So each τi is a generalized derivation relative to δ̃i, and
since lannR/IM = (0), from Remark 2.3 it follows that each δ̃i is derivation on
R/I. On the other hand, it can be easily checked that δ̃1δ2 = δ̃1δ̃2. From the fact
that τ1τ2 is a generalized derivation relative to δ1δ2, using a similar argument as
above, it follows that τ1τ2 is a generalized derivation relative to δ̃1δ2 = δ̃1δ̃2 (in
this case, M is a left R/I-module). So δ̃1δ̃2 is a derivation on R/I, because M is
a faithful left R/I-module.

The ring R/I is prime and by Remark 2.4, it is also 2-torsion free. In addition,
δ̃1δ̃2 is a derivation on R/I. Thus, by Posner’s first theorem, δ̃1 = 0 or δ̃2 = 0.

Let δ̃1 = 0. In this case, according to the definition of δ̃1, we have δ1(R) ⊆ I.
So

τ1(am) = aτ1(m) (a ∈ R,m ∈ M).

This means that τ1 ∈ EndRM . Hence

τ1τ2(am) = τ1(aτ2(m) + δ2(a)m)

= aτ1τ2(m) + δ2(a)τ1(m).

On the other hand, our assumptions and the fact that δ1(R) ⊆ I imply that

τ1τ2(am) = aτ1τ2(m) + δ1δ2(a)m

= aτ1τ2(m).

Comparing these two identities, we arrive at

δ2(a)τ1(m) = 0 (a ∈ R,m ∈ M).

Thus for all a, b ∈ R and m ∈ M , we have

δ2(a)bτ1(m) = δ2(a)τ1(bm) = 0.

Therefore δ2(a)Rτ1(m) = 0 for all a ∈ R and m ∈ M . Primeness of M implies
that either δ2(a)M = (0) or τ1(m) = 0 for all a ∈ R,m ∈ M . So either τ1 = 0 or
τ1 ̸= 0 and δ2(a)M = (0) for all a ∈ R, that is, τ1 = 0 or τ1 ̸= 0 and τ2 ∈ EndRM .

By a similar argument as above, we can show that if δ̃2 = 0, then either τ2 = 0
or τ2 ̸= 0 and τ1 ∈ EndRM .

Consequently, one of the possibilities (i), (ii), or (iii) holds true.
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Conversely, assume that the case (ii) happens. Then δ2(R) ⊆ lannRM . By
a similar argument as given above, we can prove that δ1(lannRM) ⊆ lannRM .
Consequently, τ1τ2 = 0, and we have

0 = τ1τ2(am) = aτ1τ2(m) + δ1δ2(a)m

for all a ∈ R and m ∈ M . This means that τ1τ2 is a generalized derivation relative
to δ1δ2. If we have any of the cases (i) or (iii), a similar argument shows that τ1τ2
is a generalized derivation relative to δ1δ2. □

Suppose that R is a 2-torsion free prime ring and that δ1, δ2 are derivations on
R. If we consider R as a left R -module, then R is a prime module and δ1, δ2 are
generalized derivations relative to δ1, δ2, respectively. Now, if δ1δ2 is a generalized
derivation relative to the additive mapping δ1δ2, then by the previous theorem,
we should have either δ1 = 0, δ2 = 0, or δ1, δ2 ∈ EndR(R). Since R is a prime ring
and δ1, δ2 are derivations, we should have δ1 = 0 or δ2 = 0, which is the Posner’s
first theorem. Hence Theorem 3.1 is a generalization of Posner’s first theorem on
prime modules.

In the next corollary, we consider the iterate of generalized derivations and
module endomorphisms.
Corollary 3.2. Suppose that M is a 2-torsion free prime module, that τ : M → M
is a generalized derivation relative to additive map δ, and that ϕ ∈ EndRM . Then
τϕ ∈ EndRM if and only if one of the following conditions holds:

(i) τ = 0;
(ii) ϕ = 0;
(iii) τ ̸= 0, ϕ ̸= 0 and τ ∈ EndRM .

Proof. Since ϕ ∈ EndRM , it follows that ϕ is a generalized derivation relative to
γ = 0. Then τϕ ∈ EndRM is a generalized derivation relative to δγ = 0. Now,
the result follows from Theorem 3.1. □

One notes that [5, Theorem 3.7] is a special case of the corollary above. So
Theorem 3.1 is also a generalization of [5, Theorem 3.7].

In the next corollary, we present a generalization of Posner’s first theorem to
derivations acting on left ideals.
Corollary 3.3. Suppose that R is a 2-torsion free prime ring and that L is a
nonzero left ideal of R. Let δ1, δ2 : R → R be derivations such that δi(L) ⊆ L
(i = 1, 2) and for all a ∈ R, x ∈ L

δ1δ2(ax) = aδ1δ2(x) + δ1δ2(a)x.

Then either δ1 = 0 or δ2 = 0.
Proof. Let a ∈ R and x ∈ L be such that aRx = (0). Since R is prime, we have
a = 0 or x = 0. So either aL = (0) or x = 0, concluding that L is prime as a left
R-module. Define the additive mappings τi : L → L (i = 1, 2) by τi = δi|L. Then

τi(ax) = δi(ax)

= aδi(x) + δi(a)x

= aτi(x) + δi(a)x
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for all a ∈ R and x ∈ L, i = 1, 2. So each τi is a generalized derivation relative
to δi. According to the assumption,

τ1τ2(ax) = δ1δ2(ax)

= aδ1δ2(x) + δ1δ2(a)x

= aτ1τ2(x) + δ1δ2(a)x

for all a ∈ R, x ∈ L. Hence, τ1τ2 is a generalized derivation relative to (the
additive map) δ1δ2. Now all conditions of Theorem 3.1 hold for τ1 and τ2 on
the 2-torsion free left R-module L. So either τ1 = 0, τ2 = 0, or τ1, τ2 ̸= 0 and
τ1, τ2 ∈ EndRL. If τ1, τ2 ̸= 0 and τ1, τ2 ∈ EndRL, then for i = 1, 2 we have

τi(ax) = aτi(x) = aδi(x).

On the other hand,
τi(ax) = δi(ax)

= aδi(x) + δi(a)x,

and hence δi(a)x = 0 (a ∈ R, x ∈ L). Thus for all a ∈ R and 0 ̸= x ∈ L, we have
δi(a)Rx = 0.

The primeness of R shows that δi = 0. So τi = 0 for i = 1, 2, a contradiction.
Therefore, the third case is impossible. If τ1 = 0 or τ2 = 0, then a similar
argument shows that either δ1 = 0 or δ2 = 0. □

Creedon [4, Theorem 2] proved that if δ1,δ2 are derivations on a ring R such
that δ1δ2(R) ⊆ P , where P is a prime ideal for which the characteristic of R/P
is not 2, then δ1(R) ⊆ P or δ2(R) ⊆ P . If P = (0), then obviously, the Creedon’s
result is just the Posner’s first theorem. In the next theorem, we generalize the
Creedon’s result to left modules.

Theorem 3.4. Suppose that M is a left R-module and that P is a prime sub-
module of M such that M/P is 2-torsion free. Let δ1, δ2 be derivations on R
and let τ1, τ2 be generalized derivations relative to δ1, δ2, respectively, such that
τ1τ2(M) ⊆ P and δ1δ2(R) ⊆ (P : M). Then one of the following conditions holds:

(i) τ1(M) ⊆ P ;
(ii) τ2(M) ⊆ P ;
(iii) τ1(M) ⊈ P, τ2(M) ⊈ P and δ1(R) ⊆ (P : M), δ2(R) ⊆ (P : M).

Proof. From the fact that lannR(M/P ) = (P : M) and Remark 2.4, it follows
that R/(P : M) is 2-torsion free. Also, (P : M) is a prime ideal, since P is a
prime submodule. Now, according to [4, Theorem 2], we have

δ1(R) ⊆ (P : M) or δ2(R) ⊆ (P : M).

Let δ1(R) ⊆ (P : M). Then
τ1τ2(am) =aτ1τ2(m) + δ1(a)τ2(m)

+ δ2(a)τ1(m) + δ1δ2(a)m
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for all a ∈ R, m ∈ M . By hypothesis, we conclude that δ2(a)τ1(m) ∈ P (a ∈
R,m ∈ M). Now,

δ2(a)τ1(bm) = δ2(a)bτ1(m) + δ2(a)δ1(b)m

for all a, b ∈ R, m ∈ M . Since δ1(b)m ∈ P and δ2(a)τ1(bm) ∈ P , it follows that
δ2(a)bτ1(m) ∈ P for all a, b ∈ R, m ∈ M . So

δ2(a)Rτ1(m) ⊆ P

for all a ∈ R, m ∈ M . Since P is prime, we have two possibilities: τ1(M) ⊆ P or
τ1(M) ⊈ P , δ2(a)M ⊆ P (a ∈ R), that is, either τ1(M) ⊆ P or τ1(M) ⊈ P and
δ2(R) ⊆ (P : M).

If δ2(R) ⊆ (P : M), then a similar argument shows that either τ2(M) ⊆ P or
τ2(M) ⊈ P and δ1(R) ⊆ (P : M).

□

Consider the ring R as a left R-module, and let P be a prime ideal not of
characteristic 2. Clearly P is a prime submodule of R. If δ1, δ2 are derivations on
R such that δ1δ2(R) ⊆ P , then δ1, δ2 are generalized derivations relative to δ1, δ2,
respectively, and δ1δ2(R) ⊆ (P : R) = P . Thus the conditions of the previous
theorem are fulfilled on R as a left R-module and derivations δ1, δ2. So either
δ1(R) ⊆ P or δ2(R) ⊆ P (third possibility can not happen). This shows that
Theorem 3.4 is a generalization of [4, Theorem 2]. Also, [5, Proposition 3.6(ii)]
is a special case of Theorem 3.4.

As a consequence of Theorem 3.4, we have the following corollary.

Corollary 3.5. Suppose that M is a 2-torsion free prime left R-module, that
τ : M → M is a generalized derivation relative to the derivation δ : R → R, and
that ϕ ∈ EndRM . Let τϕ = 0. Then either τ = 0, ϕ = 0 or τ ̸= 0, ϕ ̸= 0, τ ∈
EndRM .

Proof. The endomorphism ϕ is a generalized derivation relative to the derivation
γ = 0. Let P = (0). In this case, δγ(R) = (0) ⊆ lannRM and τϕ(M) = (0). Now,
the conditions of Theorem 3.4 are satisfied, so the result will be obtained. □

A special case of Corollary 3.5 is [5, Proposition 3.6(iii)]. Thus Theorem 3.4 is
a generalization of [5, Proposition 3.6(iii)].

4. Product of derivations on trivial extensions

In this section, we examine Posner’s first theorem for a certain class of deriva-
tions on trivial extensions. Throughout this section, R is a unitary ring and M is
an R-bimodule. Note that the concept of derivation can be generalized as follows:
An additive mapping δ : R → M is called a derivation if δ(ab) = δ(a)b + aδ(b)
for all a, b ∈ R.

In the following lemma, which is proved in [6], the structure of derivations on
trivial extensions has been described.
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Lemma 4.1. ([6, Theorem 2.1]) Let ∆ be an additive map on the trivial extension
T (R,M). Then ∆ is a derivation if and only if there exist additive maps δ : R →
R, γ : R → M , λ : M → R and τ : M → M such that

∆(r,m) = (δ(r) + λ(m), γ(r) + τ(m))

and
(i) δ and γ are derivations;
(ii) τ satisfies

τ(am) = aτ(m) + δ(a)m and τ(ma) = τ(m)a+mδ(a)

for all a ∈ R and m ∈ M ;
(iii) λ is an R-bimodule homomorphism satisfying

λ(m)m′ +mλ(m′) = 0

for all m,m′ ∈ M .
According to part (ii) of the above lemma, τ is a generalized derivation relative

to δ on M , both as a left R-module and as a right R-module.

Remark 4.2. In view of the previous lemma, if δ : R → R and τ : M → M are
additive maps, then the additive map ∆ : T (R,M) → T (R,M) defined by

∆((a,m)) = (δ(a), τ(m))

is a derivation on T (R,M) if and only if δ is a derivation and τ is a generalized
derivation relative to δ, both from the left and right. We investigate the Posner’s
first theorem for this class of derivations on T (R,M).

First, in the following example, we show that the product of two nonzero
derivations on T (R,M) can be a derivation.

Example 4.3. Define ∆ : T (R,M) → T (R,M) by
∆((a,m)) = (0,m).

It is easily verified that ∆ is a derivation on T (R,M). In addition,
∆2((a,m)) = (0,m) = ∆(0,m).

So ∆2 is also a derivation on T (R,M). Indeed ∆ ̸= 0.

In the next theorem, we consider derivations on T (R,M) as mentioned in
Remark 4.2, and we examine Posner’s first theorem for this class of derivations.

Theorem 4.4. Suppose that ∆i((a,m)) : T (R,M) → T (R,M) (i = 1, 2) are
derivations given by

∆i((a,m)) = (δi(a), τi(m)),

where each δi is a derivation on R and τi is a generalized derivation relative to
δi on M both from the left and right. Let M be a faithful 2-torsion free prime
left R-module. Then ∆1∆2 is a derivation on T (R,M) if and only if one of the
following conditions holds:

(i) ∆1 = 0;
(ii) ∆2 = 0;
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(iii) ∆i((a,m)) = (0, τi(m)) (i = 1, 2), where each τi is a nonzero R-bimodule
endomorphism on M .

Proof. We have

∆1∆2((a,m)) = ∆1((δ2(a), τ2(m))

= (δ1δ2(a), τ1τ2(m)) (a ∈ R,m ∈ M).

Suppose that ∆1∆2 is a derivation. By Remark 4.2, δ1δ2 is a derivation and τ1τ2
is a generalized derivation relative to δ1δ2 on M both as a left and as a right
R-module. On the other hand, M is a 2-torsion free prime left R-module. Since
conditions of Theorem 3.1 are satisfied by τ1, τ2, we have one of the following
conditions:

(i) τ1 = 0;
(ii) τ2 = 0;
(iii) τ1 ̸= 0, τ2 ̸= 0 and τ1, τ2 ∈ EndRM .

(i) Let τ1 = 0. Then

0 = τ1(am) = aτ1(m) + δ1(a)m,

so that δ1(a)m = 0 for all a ∈ R and m ∈ M . Since M is faithful as a left
R-module, we conclude that δ1 = 0. Therefore, ∆1 = 0.

(ii) By a similar argument as in part (i), we can prove that ∆2 = 0.
(iii) Since τi ∈ EndRM (i = 1, 2), it follows that

τi(am) = aτi(m),

and on the other hand,

τi(am) = aτi(m) + δi(a)m

for all a ∈ R and m ∈ M . Comparing these two identities, we obtain δi(a)m = 0
for all a ∈ R and m ∈ M . The faithfulness of M as a left R-module implies that
δi = 0 (i = 1, 2). Now

τi(ma) = τi(m)a+mδi(a) = τi(m)a

for all a ∈ R and m ∈ M . This means each τi is also a right R-module endomor-
phism on M . Therefore, each τi is an R-bimodule endomorphism on M . Since in
this case τi ̸= 0 and δi = 0 (i = 1, 2), we have

∆i((a,m)) = (0, τi(m)) ̸= 0 (a ∈ R,m ∈ M).

The converse is trivial. □

If R is a 2-torsion free prime ring, then R is a 2-torsion free prime left R-
module, and obviously it is also faithful. So Theorem 4.4 holds true for T (R,R),
where R is a 2-torsion free prime ring.
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