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Abstract. Steady rigid rotation of a fluid in general relativity has been re-
markably tackled by many authors specifically after Godel proposed relativistic
model of a rotating dust universe. Considering the fact that stationary Kaluza–
Klein perfect fluid models in standard Einstein theory are not available in
literature, the significance of obtaining and analyzing such solutions in order
to investigate the effects of dimensionality on the different physical parame-
ters is undoubtedly undeniable. In this paper, the problem of symmetries and
conservation laws for some specific solutions of Kaluza–Klein field equations
for stationary symmetric fluid models in standard Einstein theory is exhaus-
tively analyzed. For this purpose, a physically viable stationary Kaluza–Klein
perfect fluid solution is considered, and the corresponding point generators of
one parameter Lie groups of transformations that leave invariant the action
integral associated to the Lagrangian, namely, Noether symmetries, are com-
puted. A brief discussion regarding the structure of the Lie algebra of Noether
symmetries from the algebraic point of view is presented. Moreover, a com-
plete classification of the resulted Noether symmetry subalgebras is proposed
by constructing an optimal system of one-dimensional subalgebras via the ad-
joint representation. Besides, the Killing vector fields of our analyzed geodesic
Lagrangian are totally determined. Significantly, all the corresponding con-
servation laws of the Euler–Lagrange (geodesic) equations concluded from the
obtained Noether symmetries are comprehensively calculated.
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1. Introduction and preliminaries

The original Kaluza–Klein theory can be regarded as one of the first endeavors
to unify two of the fundamental forces of nature, namely gravitation and elec-
tromagnetism. The connections among Minkowski’s four-dimensional space-time
and Maxwell’s unification of electricity and magnetism, stimulated Nordestrom
[24] in 1914 (English translation in [1]) and independently Kaluza [14] in 1921
(English translation in [1, 9, 22]) to demonstrate that five-dimensional general
relativity comprises both Einstein’s four-dimensional gravity and Maxwell’s elec-
tromagnetic (EM) field. Nevertheless, they imposed an artificial constraint of
no dependence on fifth coordinate known as the cylinder condition. In Kaluza’s
original paper, the obtained equations are then divided into three distinct sets.
One of which is corresponding to the Einstein four-dimensional field equations
for gravitation. Another is equivalent to Maxwell’s equations for the EM field.
A third one characterizes a scalar field. In 1926, Klein [16] (English transla-
tion in [1, 9, 22]) elaborated a five-dimensional extension of general relativity
but with some important distinctions. Indeed, he proposed a physical basis to
avoid Kaluza’s cylinder condition in the compactification of the fifth dimension.
Nowadays, this approach is extensively applied in higher-dimensional generaliza-
tions to contain weak and strong interactions. In addition, Klein illustrated that
Kaluza’s cylinder condition would appear inherently whenever the fifth coordi-
nate had (a): a circular topology in which case physical field would periodically
depend on it and hence could be Fourier-expanded; and (b): a small enough,
that is, compactified scale in which case the energies of all Fourier manners above
the ground state could be made extremely high as to be not observable. Con-
sequently, physics would be practically independent of Kaluza’s fifth dimension,
as desired (refer to [28] for more details). The three main features of models
discussed above are as follows: (1): Matter in dimension four can be regarded
as a manifestation of pure geometry in dimension five, that is, no explicit energy
momentum tensor (4 + d)TAB is required. Besides, the higher-dimensional Ein-
stein tensor (4 + d)GAB

, that is, the metric and its derivatives, totally comprises
the gravitational field as well as the electromagnetic and Yang-Mills fields. (2):
The higher-dimensional theory is a minimal extension of general relativity in the
sense that there is not any modification to the mathematical structure of Ein-
stein’s theory. Nevertheless, the only difference is that the indices instead of 0 to
3 run over 0 to (3 + d). (3): Physics depends only on the first four coordinates;
that is, they are a priori cylindrical.

Taking into account the feature (2) of Kaluza’s approach, the Christoffel sym-
bols Γ̂CAB, the Ricci tensor R̂AB, and the Ricci scalar R̂ are defined as follows
[28]:


Γ̂CAB =

1

2
ĝCD

(
∂AĝDB + ∂B ĝDA − ∂DĝAB

)
,

R̂AB = ∂CΓ̂
C
AB − ∂BΓ̂

C
AC + Γ̂CABΓ̂

D
CD − Γ̂CADΓ̂

D
BC ,

R̂ = ĝABR̂AB,

(1.1)
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where ĝAB is the five-dimensional metric tensor and the capital Latin indices
A,B, . . . run over 0, 1, 2, 3, 4, Furthermore, the five-dimensional Einstein equa-
tions with no five-dimensional energy momentum tensor are defined by ĜAB = 0

or equivalently, R̂AB = 0, where ĜAB ≡ R̂AB − 1

2
ĝABR̂. These relations are

resulted via variation of a five-dimensional version of the usual Einstein action,

S = − 1

16πĜ

∫
R̂
√

−ĝ d4x dy (1.2)

with respect to the five-dimensional metric, where Ĝ is a five-dimensional gravi-
tational constant and y = x4 stands for the new fifth coordinate. In general, for
the metric, one identifies the αβ-part of ĝAB with the four-dimensional metric
tensor gαβ, the α4-part as the electromagnetic potential Aα, and ĝ44 with a scalar
field Φ. Thus the convenient parametrization of it is as follows:

ĝAB(x, y) =


gαβ + κ2Φ2AαAβ κΦ2Aα

κΦ2Aβ Φ2

 , (1.3)

where Greek indices α, β, . . . run over 0, 1, 2, 3 and κ is a multiplicative factor,
which can be denoted by κ = 4

√
πG in terms of the four-dimensional gravitational

constant. By applying the metric (1.3) and taking into account the cylinder
condition, the Einstein action (1.2) consists of the following three components:

S = −
∫
d4x

√
−g Φ

(
R

16πG
+

Φ2FαβF
αβ

4
+

2 ∂αΦ ∂αΦ

3κ2Φ2

)
, (1.4)

where G is described in terms of its (five-dimensional) counterpart Ĝ by G ≡
Ĝ∫
dy

. Meanwhile, according to this action, the field equations

δS = 0 −→ ĜAB = 0 ⇐⇒ R̂AB = 0 (1.5)

reduce to these field equations in terms of four-dimensional quantities [1, 23, 30],

Gαβ =
κ2Φ2

2
TEM
αβ − 1

Φ

[
∇α

(
∂βΦ

)
− gαβ□Φ

]
,

∇α
Fαβ

= −3
∂αΦ

Φ
Fαβ,

□Φ =
κ2Φ3

4
FαβF

αβ,

(1.6)

whereGαβ ≡ Rαβ−R gαβ/2 is the Einstein tensor and TEM
αβ is the electromagnetic

energy-momentum tensor

TEM
αβ ≡ gαβ FγδF

γδ

4
− F γ

αFβγ , Fαβ ≡ ∂αAβ − ∂βAα. (1.7)
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Because of the fact that there exists fifteen independent elements in the (five-
dimensional) metric (1.3), there are a total of 10+4+1 = 15 equations. Moreover,
for Φ = constant, the field equations are just Einstein and Maxwell equations:

Gαβ = 8πGΦ2 TEM
αβ , ∇αFαβ = 0.Aα. (1.8)

For more exhaustive details refer to [28]. Since the pioneering research by Van
Stockum [32], steady rigid rotation of a fluid in general relativity has been re-
markably dealt with many authors. Van Stockum obtained the general metric
for an axisymmetric finite rotating dust cloud, and he also proposed the solution
for the particular case of an infinite cylinder of rotating dust. The outstanding
point in this solution is that with zero pressure the density increased outwards.
The investigation of rotating fluids in the context of general relativity received
notable consideration principally after Godel [10] proposed relativistic model of a
rotating dust universe. Besides, Bonner [4, 5] derived a specific solution from Van
Stockum’s axisymmetric class in which the dust cloud owned a point singularity
at its center and extended to infinity. Moreover, Krasinski [17, 18, 19, 20] and
also Herlt [12] have derived rigidly rotating axisymmetric stationary solutions
fundamentally by considering specific assumptions regarding four-flow velocities
of the perfect fluid. In [7], a comprehensive summary of papers related to the
axisymmetric steady rotation of a perfect fluid, incorporating the cylindrically
case, is presented. In 1996, Davison [8] reported a one-parameter set of solutions
for a fluid admitting the equation of state p = (2/3)ρ, rotating about a regular
axis. Considering the fact that stationary Kaluza–Klein perfect fluid models in
standard Einstein theory are not available in literature, obtaining and analyzing
such solutions are so constructive in order to investigate the effects of dimen-
sionality on the different physical parameters. In, Tikekar and Patel [31] have
formulated the Kaluza–Klein field equations for cylindrically symmetric rotat-
ing distributions of perfect fluid. They have reported a set of physically viable
solutions, which is believed to be the first such Kaluza–Klein solutions, and it
includes the Kaluza–Klein counterpart of Davidson’s solution.

In the following, according to [31], we will present a brief description of Kaluza–
Klein field equations for stationary cylindrically symmetric fluid models in stan-
dard Einstein theory. For further complete information refer to [31].

A general stationary cylindrically symmetric five-dimensional spacetime is de-
noted by the following metric:

ds2 = D2(dt+Hdϕ)2 − A2dr2 −B2dz2 − r2C2dϕ2 − E2dψ2, (1.9)

where t is the time coordinate, r, z, and ϕ are cylindrical polar coordinates, ψ
represents the coordinate corresponding to the extra spatial dimension, and A,
B, C, D, and H are functions of the radial coordinate r only. By expressing with
respect to pentad

θ1 = Adr, θ2 = Bdz, θ3 = rCdϕ, θ4 = Edψ, θ5 = D(dt+Hdϕ), (1.10)

the metric (1.9) has the following form:

ds2 = (θ5)2 − (θ1)2 − (θ2)2 − (θ3)2 − (θ4)2. (1.11)
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If the metric (1.9) denotes the spacetime of a stationary perfect fluid rotating
about the regular axis r = 0, then the metric coefficients will be related to the
dynamical variables through the Einstein field equations, which are in the pentad
notation applying the system of units rendering c = G = 1, adopted in the form

R(ab) = −8π

[
(ρ+ p)v(a)v(b) −

1

3
(ρ− p)g(ab)

]
. (1.12)

Here, va represents components in the pentad frame of the unit time-like flow
vector vi of the fluid, which satisfies vivi = 1. Also, ρ, p denote the matter
density and the fluid pressure, respectively. It is more convenient to adapt a
coordinate comoving with the observer. Consequently, va = (0, 0, 0, 0, 1), and the
field equations (1.12) imply the following system of equations:

R(11) = R(22) = R(33) = R(44) = −8π

3
(ρ− p),

R(55) = −16π

3
(ρ+ 2p),

R(35) = 0,

(1.13)

The field equations comprise a system of six equations relating the two physical
parameters ρ and p of the fluid and the six metric coefficients A, B, C, D, E,
and H. Significantly, from the first and the second equations of the system (1.13)
the following consistency conditions are resulted:

R(11) = R(22) = R(33) = R(44). (1.14)

Davidson [8] obtained a solution of the relativistic system of field equations for
a perfect fluid in rigid rotation about a regular axis. His solution suggests the
possibility that the system of Kaluza–Klein field equations (1.13) can be solved
by assuming the following form for the metric coefficients A, B, C, D, E, and H:

A = (1 + k2r2)a, B = (1 + k2r2)b, C = (1 + k2r2)c,
D = (1 + k2r2)d, E = (1 + k2r2)e, (1.15)

where a, b, c, d, e, and k are constants. Note that expressions (1.15) confirm the
regularity of the metric for all finite r. Equation R(22) = R(44) in (1.14) is then
satisfied if and only if

b = e. (1.16)

Accordingly, the equation R(35) = 0 in (1.13) yields the following two significant
identities:

H = αr2, (1.17)
a+ c = 2b+ 3d, (1.18)

where α is the arbitrary constant of integration. Moreover, taking into account
relations (1.16) and (1.18), the equation R(11) = R(33) contained in (1.14) reduces
to the following algebraic relation:

2b2 + 2b(1 + 4d) + d(1 + 2d) = 0. (1.19)
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Consequently, the Kaluza–Klein field equations are equivalent to the algebraic
relations (1.16)–(1.19), relating the seven parameters a, b, c, d, e, α, and k with
H(r) as determined by (1.17).

In [31] certain specific cases for physical relevance that follow for certain par-
ticular choices of the free parameters, are discussed. In this paper, we will com-
prehensively analyze the problem of symmetries and conservation laws for the
following specific solution, which is reported in [31].

Taking into account the algebraic relations (1.16)–(1.19), the choice b = e =
d = 0 yields

a = −c = −1/2, α2 = 2k2. (1.20)
The spacetime of this class of solutions has the following metric:

ds2 = (dt+
√
2kr2dϕ)2 − dr2

1 + k2r2
− dz2 − r2(1 + k2r2)dϕ2 − dψ2, (1.21)

and it characterizes a stationary distribution of fluid with the equation of state
p = ρ, corresponding to a stiff fluid with uniform density and pressure ρ = p =
k2

4π
. For further complete details refer to [31].

This paper is organized as follows: In section 2, we have specifically concen-
trated on complete investigation of the problem of symmetries for this particular
solution mentioned above. First of all, by considering the Lagrangian, which is de-
termined directly from the metric, we will compute the geodesic equations as the
Euler–Lagrange equations. Secondly, We obtain the point generators of the one
parameter Lie groups of transformations that leave invariant the action integral
corresponding to Lagrangian (Noether symmetries). Besides a brief discussion
regarding the structure of the corresponding Noether symmetry Lie algebras is
presented from the algebraic approach. Section 3 is principally dedicated to the
thorough classification of the Noether symmetry subalgebras. Accordingly, it
is focused on construction of an optimal system of one-dimensional subalgebras
via the adjoint representation. Killing vector fields can be undoubtedly reck-
oned as one of the most substantial types of symmetries and are denoted by the
smooth vector fields, which preserve the metric tensor. Additionally, the flow
corresponding to a Killing vector field generates a symmetry in a way that if each
point moves on an object at the same distance in the direction of the Killing
vector field, then distances on the object will not distorted at all. Therefore,
Killing vector fields are inherently expected to be of significant application in the
study of geodesic motion. When one investigates the Lagrangian explaining the
motion of a particle, one can realize that Killing vectors are the symmetries of the
system and lead to conserved canonical momenta analogous to cyclic coordinates
in classical mechanics. Taking into account the outstanding properties declared
above, section 4 of this paper is particularly devoted to detailed investigation of
the Killing vector fields by re-expressing the analyzed metric in the orthogonal
frame. Ultimately, in section 5, for the discussed Kaluza–Klein solution, a perfect
set of local conservation laws of the system of geodesic equations is calculated.
For this purpose, we have applied the celebrated Noether’s theore. It is notable
that Noether’s theorem is fundamentally relied on the geodesic Lagrangian and
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the corresponding Noether symmetries, which leave the action integral invariant.
Meanwhile, some concluding remarks are declared at the end of the paper.

2. Noether symmetries

In 1918, Noether [25] presented her outstanding theorem to obtain local con-
servation laws for systems of differential equations, which admit a variational
principle. Indeed, she demonstrated that if a system of differential equations ad-
mits a variational principle (action integral), then any one-parameter Lie group
of point transformations that leaves invariant the action functional results a local
conservation law. Specifically, she proposed an explicit formula for the fluxes of
the conservation law. The noticeable fact is that when an arbitrary system of dif-
ferential equations admits a variational principle, then the extremals of its action
functional yield the Euler–Lagrange equations. In this case, taking into account
Noether’s celebrated theorem, if one has a point symmetry of the action integral,
then the fluxes of a local conservation law are explicitly determined via a formula,
which comprises the infinitesimal of the point symmetry and the corresponding
Lagrangian density of the action integral. In the following, Noether’s formulation
of her theorem is presented [3, 2]. According to this formulation, it is implicated
that the action integral J [U ] to be invariant under the following one-parameter
Lie group of point transformations:{ (

x∗
)i

= xi + εξi
(
x, U

)
+O

(
ε2
)
, i = 1, . . . , n,(

U∗)µ = Uµ + εΩµ
(
x, U

)
+O

(
ε2
)
, µ = 1, . . . ,m.

(2.1)

with associated infinitesimal generator defined by

X = ξi
(
x, U

) ∂
∂xi

+ Ων
(
x, U

) ∂

∂U ν
. (2.2)

Suppose that a functional J [U ] is defined on a domain ∆ in terms of n independent
variables x =

(
x1, . . . , xn

)
and m arbitrary functions U =

(
U1(x), . . . , Um(x)

)
and that their corresponding partial derivatives to order k are as follows:

J(U) =

∫
∆

L
[
U
]
dx =

∫
∆

L
(
x, U, ∂U, . . . , ∂kU

)
dx. (2.3)

The function L[U ] = L
(
x, U, ∂U, . . . , ∂kU

)
is called a Lagrangian, and the func-

tional J [U ] is denoted by an action integral. Therefore, invariance hold if and
only if

∫
∆∗
L
[
U∗]dx∗ = ∫

∆

L
[
U
]
dx, where ∆∗ is the image of ∆ under the point

transformation (2.1). Furthermore, the Jacobian of the transformation (2.1) is
characterized as follows:

J = det
(
Di

(
x∗
)j)

= 1 + εDiξ
i
(
x, U

)
+O

(
ε2
)
. (2.4)

Hence, dx∗ = Jdx. Furthermore, considering the point that (2.1) is a Lie group of
transformations, in terms of the kth prolongation of the infinitesimal generator
(2.2), the following parity L

[
U∗] = exp

(
εX(k)

)
L
[
U
]

is deduced. Accordingly,
in Noether’s formulation, the one-parameter Lie group of point transformations
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(2.1) is a point symmetry of J [U ] (2.3) if and only if for arbitrary U(x) the
following identity holds [3]:∫

∆

(
J exp

(
εX(k)

)
− 1
)
L
[
U
]
dx

= ε

∫
∆

(
L
[
U
](
Diξ

i
(
x, U

))
+X(k)L

[
U
])
dx+O

(
ε2
)
,

(2.5)

where X(k) is the kth prolongation of the infinitesimal generator (2.2) expressed
by

X(k) = ξi(x, U)
∂

∂xi
+ Ωµ(x, U)

∂

∂Uµ
+ Ω

(1)µ
i

(
x, U, ∂U

) ∂

∂Uµ
i

+ · · ·+ Ω
(k)µ
i1...ik

(
x, U, ∂U, . . . , ∂kU

) ∂

∂Uµ
i1...ik

.
(2.6)

Moreover, the extended infinitesimals are defined as follows:
Ω

(1)µ
i = DiΩ

µ −
(
Diξ

j
)
Uµ
j ,

Ω
(k)µ
i1...ik

= DikΩ
(k−1)µ
i1...ik−1

−
(
Dikξ

j
)
Uµ
i1...ik−1j

,

µ = 1, . . . ,m, i, ij = 1, . . . , n for j = 1, . . . , k with k = 2, 3, . . . .

(2.7)

Consequently, if J [U ] (2.3) possesses the point symmetry (2.2), then the O(ε2)
term in (2.5) vanishes. As a consequence, the following significant identity is
resulted [3]:

L[U ]Diξ
i(x, U) +X(k)L[U ] ≡ 0. (2.8)

It is noticeable that variational symmetries are of particular importance princi-
pally considering the fact that due to celebrated Noether’s theorem [25] there is a
procedure that connects the constants of the motion of an arbitrary Lagrangian
system to its corresponding symmetry transformations [13, 15]. In addition, it is
worth mentioning that the geodesic equation can be also derived via the action
principle. Since the associated Euler–Lagrange equations (geodesic equation) are
second order ordinary differential equations, one generally takes first order La-
grangians. Specifically, we consider L(s, xµ, ẋµ), where “”̇ denotes differentiation
with respect to the arc length parameter s, for minimizing the arc length (writ-
ten from the square of the arc length for convenience). Hence, the action will be
defined as

J =
1

2

∫
gµν

dxµ

dτ

dxν

dτ
dτ. (2.9)

Now, by varying this action with respect to the curve xµ and through straight-
forward application of the Euler–Lagrange equation d

dτ

∂L

∂ẋµ
− ∂L

∂xµ
= 0 with

Lagrangian L[xµ, ẋµ] = 1

2
gµν(x

κ)
dxµ

ds

dxν

ds
, the following equivalent formulation of

the geodesic equation is determined:
d2xσ

dτ 2
+ Γσρν

dxρ

dτ

dxν

dτ
= 0, Γσρν =

1

2
gσµ
[
∂ρgµν + ∂νgµρ − ∂µgρν

]
. (2.10)
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Consequently, as discussed above, according to Noether’s formulation of Noether’s
theorem, Noether symmetries, or symmetries of a Lagrangian are defined as fol-
lows: A variational integral defined as I =

∫
V

L(s, xµ, ẋµ) ds is called to be
invariant under a one parameter Lie group of transformations:{

s∗ = s∗(s,x; ε) = s+ εξ(s,x) +O(ε2),

xµ∗ = xµ∗(s,x; ε) = xµ + εΩµ(s,x) +O(ε2)
(2.11)

with associated infinitesimal generator given by

X = ξ(s, xµ)
∂

∂s
+ Ων(s, xµ)

∂

∂xν
, (2.12)

if the following identity holds:
∫
V ∗
L(s∗, xµ∗, ẋµ∗) ds∗ =

∫
V

L(s, xµ, ẋµ) ds. Mean-
while, it is noticeable that V ∗ is a volume obtained from V under the considered
transformation (2.11). In other words, the invariance of I =

∫
V

L(s, xµ, ẋµ) ds

up to gauge A = A(s, xµ) can be thoroughly described by∫
V ∗
L(s∗, xµ∗, ẋµ∗) ds∗ =

∫
V

[
L(s, xµ, ẋµ) + ε

dA

ds

]
ds. (2.13)

Now, taking into account d

ds
=
ds∗

ds

d

ds∗
and differentiating (2.13) with respect to

s, we have (
1 + ε

dξ

ds

)
L(s∗, xµ∗, ẋµ∗) = L(s, xµ, ẋµ) + ε

dA

ds
. (2.14)

Now, considering the one-parameter Lie group of point transformations (2.11),
the following identities are resulted:(

1 + ε
dξ

ds

)
L(s+ εξ, xµ + εΩµ, ẋµ + εΩµ,s) = L(s, xµ, ẋµ) + ε

dA

ds
,(

1 + ε
dξ

ds

)[
L(s, xµ, ẋµ) + ε

∂L

∂s
ξ + ε

∂L

∂xµ
Ωµ + ε

∂L

∂ẋµ
Ωµ,s

]
= L(s, xµ, ẋµ) + ε

dA

ds
,

ε
∂L

∂s
ξ + ε

∂L

∂xµ
Ωµ + ε

∂L

∂ẋµ
Ωµ,s + ε

dξ

ds
L(s, xµ, ẋµ) +O(ε2) = ε

dA

ds
.

(2.15)

Overall, taking into account the identity (2.15) and by neglecting O(ε2), the
following relation is obtained:

X(1)L+ (Dsξ)L = DsA, (2.16)

where Ds =
∂

∂s
+ ẋµ

∂

∂xµ
, which is defined on the real parameter fiber bundle

over the tangent bundle to the manifold and X(1) is the first prolongation of the
vector field (2.12) and is expressed by

X(1) = X+
(
Ων
,s + Ων

,µẋ
µ − ξ,sẋ

ν − ξ,µẋ
µẋν
) ∂

∂ẋν
. (2.17)

Then X is called a Noether point symmetry of this Lagrangian (2.9).



NOETHER CONSERVATION LAWS OF A SPECIFIC KALUZA–KLEIN SOLUTION 135

Remark 2.1. Taking into account the fact that analysis of the problem of sym-
metries and conservation laws for some specific solutions of Kaluza–Klein field
equations for stationary symmetric fluid models in standard Einstein theory is
the main concentration of the current research, throughout the paper we specif-
ically deal with stationary cylindrically symmetric five-dimensional spacetimes.
In other words, in the metric, which is discussed here, t is the time coordinate,
r, z, and ϕ are cylindrical polar coordinates, and ψ represents the coordinate
corresponding to the extra spatial dimension. Consequently, in above relations
we have µ, ν = 1, 2, 3, 4, 5.

In this section, first of all, by considering the Lagrangian that is determined
directly from the metric (1.21), we will compute the geodesic equations as the
Euler Lagrange equations. Secondly, We obtain the point generators of the one
parameter Lie groups of transformations that leave invariant the action integral
corresponding to the Lagrangian (Noether symmetries).

2.1. Computation of the Noether symmetries for solution (1.21). The
Lagrangian for the metric (1.21) is

L = ṫ2 − ṙ2

1 + k2r2
− ż2 + (k2r4 − r2)ϕ̇2 + 2

√
2kr2ṫϕ̇− ψ̇2. (2.18)

The corresponding simplified Euler–Lagrange equations are the geodesic equa-
tions given by

E(I) :



E1 : ẗ+
16rk2

7k2r2 + 1
ṫṙ +

4
√
2k3r3

7k2r2 + 1
ṙϕ̇ = 0,

E2 : r̈ + 4
√
2kr(1 + k2r2) ṫϕ̇− rk2

1 + k2r2
ṙ2

+r(1 + k2r2)(2k2r2 − 1) ϕ̇2 = 0,

E3 : z̈ = 0,

E4 : ϕ̈− 4
√
2k

r(7k2r2 + 1)
ṫṙ +

2(6k2r2 + 1)

r(7k2r2 + 1)
ṙϕ̇ = 0,

E5 : ψ̈ = 0.

(2.19)

By applying (2.18) in (2.16), we obtain the determining (partial differential)
equations for seven unknown functions ξ, Ωµ, and A, where each of these is a
function of six variables, that is, s, t, r, z, ϕ, and ψ. Solving these equations for
the metric (1.21), the following set of solutions is concluded.

Theorem 2.2. The Lie group of Noether symmetries corresponding to solution
(1.21) has a Lie algebra generated by the vector fields X = ξ ∂

∂s
+ Ω1 ∂

∂t
+ Ω2 ∂

∂r
+
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Ω3 ∂
∂z

+ Ω4 ∂
∂ϕ

+ Ω5 ∂
∂ψ

, where

ξ(s, t, r, z, ϕ, ψ) = c1,

Ω1(s, t, r, z, ϕ, ψ) =

√
2rk√

1 + k2r2

(
c8 cosϕ− c9 sinϕ

)
+ c10,

Ω2(s, t, r, z, ϕ, ψ) =
√
1 + k2r2

(
c8 sinϕ+ c9 cosϕ

)
,

Ω3(s, t, r, z, ϕ, ψ) = −1

2
c4s+ c5ψ + c6,

Ω4(s, t, r, z, ϕ, ψ) =
2k2r2 + 1

r
√
1 + k2r2

(
c8 cosϕ− c9 sinϕ

)
+ c11,

Ω5(s, t, r, z, ϕ, ψ) = −1

2
c2s− c5z + c7,

A(s, t, r, z, ϕ, ψ) = c4z + c2ψ + c3.

(2.20)

and ci, i = 1, . . . , 11 are arbitrary constants.

From (2.20), we obtain the ten-dimensional Lie algebra of Noether point sym-
metries with the following basis.

Corollary 2.3. Infinitesimal generators of every one parameter Lie group of
Noether symmetries associated to (1.21) are as follows:

X1 =
∂

∂s
A = c, X2 =

∂

∂t
A = c, X3 =

∂

∂z
A = c,

X4 =
∂

∂ϕ
A = c, X5 =

∂

∂ψ
A = c, X6 = −1

2
s
∂

∂z
A = z + c,

X7 = −1

2
s
∂

∂ψ
A = ψ + c, X8 = −ψ ∂

∂z
+ z

∂

∂ψ
A = c,

X9 =

√
2rk cosϕ√
1 + k2r2

∂

∂t
+ sinϕ

√
1 + k2r2

∂

∂r
+

(2k2r2 + 1) cosϕ

r
√
1 + k2r2

∂

∂ϕ
A = c,

X10 = −
√
2rk sinϕ√
1 + k2r2

∂

∂t
+ cosϕ

√
1 + k2r2

∂

∂r
− (2k2r2 + 1) sinϕ

r
√
1 + k2r2

∂

∂ϕ
A = c.

(2.21)

The commutator table of Noether symmetry generators of the system of geodesic
equations (2.19) is given in Table 1, where the entry in the ith row and jth column
is defined as [Xi, Xj] = XiXj −XjXi, i, j = 1, . . . , 10.

Let gI denote the Lie algebra of local symmetries corresponding to the system
of geodesic equations (2.19). In this section, a brief discussion regarding the
algebraic structure of gI is presented. The Lie algebra gI is nonsolvable, because
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Table 1. Commutation relations satisfied by infinitesimal gener-
ators of gI

[ , ] X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0 0 0 0 0 −1
2
X3 −1

2
X5 0 0 0

X2 0 0 0 0 0 0 0 0 0 0

X3 0 0 0 0 0 0 0 X5 0 0

X4 0 0 0 0 0 0 0 0 X10 -X9

X5 0 0 0 0 0 0 0 -X3 0 0

X6
1
2
X3 0 0 0 0 0 0 X7 0 0

X7
1
2
X5 0 0 0 0 0 0 -X6 0 0

X8 0 0 -X5 0 X3 -X7 X6 0 0 0

X9 0 0 0 -X10 0 0 0 0 0 −4k2X4 − 2
√
2kX2

X10 0 0 0 X9 0 0 0 0 4k2X4 + 2
√
2kX2 0

if gI(1) =< Xi, [Xi, Xj] >= [gI, gI] be the derived subalgebra of gI, then we have

gI(1) = [gI, gI] =< −1

2
X3,−

(
2
√
2kX2 + 4k2X4

)
,−1

2
X5,−X6, X7,−X9, X10 >,

gI(2) = [gI(1), gI(1)] =< −
(
2
√
2kX2 + 4k2X4

)
,−4k2X9,−4k2X10 >

= [gI(2), gI(2)] = gI(3).

Thus, we have the following chain of ideals gI ⊃ gI(1) ⊃ gI(2) = gI(3) 6= 0, which
shows the nonsolvability of gI. Also, gI is not semisimple, because its killing form

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −4 0 0
0 0 0 0 0 0 0 0 8k2 0
0 0 0 0 0 0 0 0 8k2


is degenerate. Moreover, gI has a Levi decomposition of the form gI = r⋉h, where
r =< X1, X2, X3, X5, X6, X7, X8 > is the radical (the largest solvable ideal) of gI
and h =< X2 +

√
2kX4, X9, X10 > is a semisimple and nonsolvable subalgebra of

gI. Hence, the quotient algebra generated from gI can be obtained such as

gI1 = gI/r =
{
X + r | X ∈ gI

}
. (2.22)
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The members of gI1 are denoted by Yi, and the commutator table of the resulted
quotient Lie algebra is given in Table 2, where the entry in the ith row and jth
column is defined as [Yi, Yj] = YiYj − YjYi, i, j = 1, 2, 3.

Table 2. Commutation table of gI1

[ , ] Y1 Y2 Y3

Y1 0
√
2 k Y3 −

√
2 k Y2

Y2 −
√
2 k Y3 0 −2

√
2 k Y1

Y3 −
√
2 k Y2 2

√
2 k Y1 0

The relation (2.22) has noteworthy consequences on the reduction of geodesic
equations (2.19), which is not the purpose of this paper, but we will present a
brief description regarding this issue in the following.

Indeed, for the integration of an involutive distribution, the process decomposes
into the two following steps [21]:

(i) : integration of the involutive distribution with symmetry Lie algebra g/r,
and

(ii) : integration on integral manifolds with symmetry algebra r.
First, applying this procedure to the radical r, the integration problem would

be decomposed into the following two parts: the integration of the distribution
with semisimple algebra g/r and then integration of the distribution, which is
restricted to the integral manifold with the solvable symmetry algebra r.

The last step can be accomplished via quadratures. Moreover, every semisim-
ple Lie algebra g/r is a direct sum of simple ones, which are ideal in g/r. Hence,
according to the Lie–Bianchi theorem, the integration problem is reduced to in-
volutive distributions equipped with simple algebras of symmetries (refer to [21]
for complete details).

The quotient algebra gI1 is a semisimple and nonsolvable Lie algebra. It is
semsimple, because its killing form−4k2 0 0

0 8k2 0
0 0 8k2


is nondegenerate. Moreover, gI1 is nonsolvable, because if gI(1)1 =< Yi, [Yi, Yj] >=
[gI1, g

I
1] be the derived subalgebra of gI1, we have:

gI1 = g
I(1)
1 = [gI1, g

I
1] =< Y1, Y2, Y3 > .

So, it is inferred that gI1 = g
I(1)
1 6= 0, which shows the nonsolvability of gI1.

3. Classification of Noether symmetry subalgebras for the
system of geodesic equations

Let G denote the Lie group of Noether symmetries of the system of geodesic
equations. Now, G operates on the set of the solutions of equation denoted by Θ.
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Let H be an r-dimensional subgroup of G and let s · G be the orbit of s. Then,
H-invariant solutions s ∈ Θ are determined by equality s · Θ = {s}. If h ∈ G is
a transformation and s ∈ Θ, then h · (s ·H) = (h · s) · (hHh−1). So according to
[26] it is deduced that every H-invariant solution s transforms into an hHh−1-
invariant solution. Therefore, from similar subgroups of G, different invariant
solutions are obtained. Hence, the classification of H-invariant solutions is re-
duced to the problem of classification of subgroups of G, up to similarity. A list
of conjugacy inequivalent r-dimensional subgroups of G, with the property that
any other subgroup is conjugate to precisely one subgroup in the list, is called an
optimal system of r-dimensional subgroups of G. Similarly, if every member of a
list of r-dimensional subalgebras of g is equivalent to a unique member of the list
under some element of the adjoint representation, h̃ = Ad(g) · h, g ∈ G, then an
optimal system of r-dimensional subalgebras is generated. Let H and H̃ be two
connected, r-dimensional Lie subgroups of the Lie group G with corresponding
Lie subalgebras h and h̃ of the Lie algebra g of G. Then according to [26, 29],
H̃ = gHg−1 are conjugate subgroups if and only if h̃ = Ad(g) · h are conju-
gate subalgebras. Subsequently, the problem of determining an optimal system
of subgroups is equivalent to that of finding an optimal system of subalgebras.
So we will focus on this issue in the following. There is obviously an infinite
number of one-dimensional subalgebras of the system of geodesic equation Lie
algebra, each of which correspond a family of group invariant solutions. Hence,
applying all the one-dimensional subalgebras of for constructing the invariant so-
lutions is impossible. Indeed there is an effective, systematic means of classifying
these solutions, leading to an optimal system of group-invariant solutions from
which every other such solution can be derived [26, 27]. This procedure involves
constructing the adjoint representation group that introduces a conjugate rela-
tion in the set of all one-dimensional subalgebras. Taking into account the fact
that each one-dimensional subalgebra is characterized via a nonzero vector in
the corresponding symmetry Lie algebra. For one-dimensional subalgebras, this
problem is essentially the same as the problem of classifying the orbits of the
adjoint representation. An optimal set of subalgebras is generated, whenever we
select only one representative from each family of equivalent subalgebras. The
corresponding set of invariant solutions is then the minimal list from which we
can obtain all other invariant solutions of one-dimensional subalgebras simply via
transformations. Meanwhile, each Xi of the basis infinitesimal symmetries gener-
ates an adjoint representation (or interior automorphism) Ad(exp(εXi)) defined
by the Lie series as follows:

Ad(exp(ε.Xi).Xj) = Xj − ε.[Xi, Xj] +
ε2

2
.[Xi, [Xi, Xj]]− · · · , (3.1)

where [Xi, Xj] is the commutator for the Lie algebra, ε is a parameter. In the
following, the Noether symmetries associated to the system of geodesic equations
(2.19) are thoroughly classified via the adjoint representation and an optimal sys-
tem of one-dimensional subalgebras, which provides the preliminary classification
of group invariant solutions for the system of geodesic equations is constructed.
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3.1. Classification of Noether symmetries via the adjoint representation
for solution (1.21). We can expect to simplify a given arbitrary element,

X = a1X1 + a2X2 + · · ·+ a10X10 (3.2)

of the Lie algebra of Noether symmetries associated to the geodesic Lagrangian
(2.18), which was denoted by gI. Note that the elements of gI can be represented
by vectors a = (a1, . . . , a10) ∈ R10 since each of them can be written in the form
(3.2) for some constants a1, . . . , a10. Hence, the adjoint action can be regarded
as (in fact is) a group of linear transformations of the vectors (a1, . . . , a10).

Therefore, we can state the following theorem.

Theorem 3.1. An optimal system of one-dimensional Lie subalgebras of Noether
symmetries associated to the geodesic Lagrangian (2.18) is provided by those gen-
erated by

(1) : a1X1 + a2X2 + a4X4 +X5 + a6X6 + a10X10

= a1
∂

∂s
+

(
a2 − a10

√
2rk sinφ√
k2r2 + 1

)
∂

∂t
+

(
a10 cosφ

√
k2r2 + 1

)
∂

∂r
− a6

(s
2

) ∂
∂z

+

(
a4 − a10

(
2k2r2 + 1

)
sinφ

r
√
k2r2 + 1

)
∂

∂φ
+

∂

∂ψ
, A = z + c.

(2) : a1X1 + a2X2 + a4X4 +X5 + a6X6 + a9X9

= a1
∂

∂s
+

(
a2 + a9

√
2rk cosφ√
k2r2 + 1

)
∂

∂t
+

(
a9 sinφ

√
k2r2 + 1

)
∂

∂r
− a6

(s
2

) ∂
∂z

+

(
a4 + a9

(
2k2r2 + 1

)
cosφ

r
√
k2r2 + 1

)
∂

∂φ
+

∂

∂ψ
, A = z + c.

(3) : a1X1 + a2X2 +X3 + a4X4 + a7X7 + a9X9

= a1
∂

∂s
+

(
a2 + a9

√
2rk cosφ√
k2r2 + 1

)
∂

∂t
+

(
a9 sinφ

√
k2r2 + 1

)
∂

∂r
+

∂

∂z

+

(
a4 + a9

(
2k2r2 + 1

)
cosφ

r
√
k2r2 + 1

)
∂

∂φ
−
(
a7
s

2

) ∂

∂ψ
, A = ψ + c.

(4) : a1X1 + a2X2 +X3 + a4X4 + a7X7 + a10X10

= a1
∂

∂s
+

(
a2 − a10

√
2rk sinφ√
k2r2 + 1

)
∂

∂t
+

(
a10 cosφ

√
k2r2 + 1

)
∂

∂r
+

∂

∂z

+

(
a4 − a10

(
2k2r2 + 1

)
sinφ

r
√
k2r2 + 1

)
∂

∂φ
−
(
a7
s

2

) ∂

∂ψ
, A = ψ + c.
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(5) : a1X1 + a2X2 + a4X4 +X7 + a9X9

= a1
∂

∂s
+

(
a2 + a9

√
2rk cosφ√
k2r2 + 1

)
∂

∂t
+

(
a9 sinφ

√
k2r2 + 1

)
∂

∂r
+

∂

∂z

+

(
a4 + a9

(
2k2r2 + 1

)
cosφ

r
√
k2r2 + 1

)
∂

∂φ
−
(s
2

) ∂

∂ψ
, A = ψ + c.

(6) : a1X1 + a2X2 + a4X4 +X7 + a10X10

= a1
∂

∂s
+

(
a2 − a10

√
2rk sinφ√
k2r2 + 1

)
∂

∂t
+

(
a10 cosφ

√
k2r2 + 1

)
∂

∂r
+

∂

∂z

+

(
a4 − a10

(
2k2r2 + 1

)
sinφ

r
√
k2r2 + 1

)
∂

∂φ
−
(s
2

) ∂

∂ψ
, A = ψ + c.

(7) : a1X1 + a2X2 + a4X4 +X6 + a10X10

= a1
∂

∂s
+

(
a2 − a10

√
2rk sinφ√
k2r2 + 1

)
∂

∂t
+

(
a10 cosφ

√
k2r2 + 1

)
∂

∂r

−
(s
2

) ∂
∂z

+

(
a4 − a10

(
2k2r2 + 1

)
sinφ

r
√
k2r2 + 1

)
∂

∂φ
+

∂

∂ψ
, A = z + c.

(8) : a1X1 + a2X2 + a4X4 +X6 + a9X9

= a1
∂

∂s
+

(
a2 + a9

√
2rk cosφ√
k2r2 + 1

)
∂

∂t
+

(
a9 sinφ

√
k2r2 + 1

)
∂

∂r

−
(s
2

) ∂
∂z

+

(
a4 + a9

(
2k2r2 + 1

)
cosφ

r
√
k2r2 + 1

)
∂

∂φ
+

∂

∂ψ
, A = z + c.

(9) : a1X1 + a2X2 + a4X4 + a8X8 +X10

= a1
∂

∂s
+

(
a2 −

√
2rk sinφ√
k2r2 + 1

)
∂

∂t
+

(
cosφ

√
k2r2 + 1

)
∂

∂r
−
(
a8ψ
) ∂
∂z

+

(
a4 −

(
2k2r2 + 1

)
sinφ

r
√
k2r2 + 1

)
∂

∂φ
+
(
a8z
) ∂
∂ψ

, A = c.

(10) : a1X1 + a2X2 + a4X4 + a8X8 + a9X9

= a1
∂

∂s
+

(
a2 + a9

√
2rk cosφ√
k2r2 + 1

)
∂

∂t
+

(
a9 sinφ

√
k2r2 + 1

)
∂

∂r
−
(
a8ψ
) ∂
∂z

+

(
a4 + a9

(
2k2r2 + 1

)
cosφ

r
√
k2r2 + 1

)
∂

∂φ
+
(
a8z
) ∂
∂ψ

, A = c,

where ai are arbitrary real constants.
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Proof. First, F ε
i : gI → gI defined by X 7→ Ad(exp(εiXi).X) is a linear map, for

i = 1, . . . , 10. The matrix M ε
i of F ε

i , with respect to basis
{
X1, . . . ,X10

}
is

M ε
1 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

0 0
ε

2
0 0 1 0 0 0 0

0 0 0 0
ε

2
0 1 0 0 0

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


, M ε

2 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


,

M ε
3 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 −ε 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


,

M ε
4 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 cos ε − sin ε
0 0 0 0 0 0 0 0 sin ε cos ε


,
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M ε
5 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 ε 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


,

M ε
6 =



1 0 −ε
2

0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −ε 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


,

M ε
7 =



1 0 0 0 −ε
2

0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 s 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


,

M ε
8 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 cos ε 0 sin ε 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 − sin ε 0 cos ε 0 0 0 0 0
0 0 0 0 0 cos ε sin ε 0 0 0
0 0 0 0 0 − sin ε cos ε 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


,
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M ε
9 =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0

√
2
(
V − 2

)
k

0
1

2
V 0 0 0 0 0

W
4k

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0

√
2

2
W 0 kW 0 0 0 0 0

1

2
V



,

M ε
10 =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0

√
2
(
V − 2

)
4k

0
1

2
V 0 0 0 0

W
4k

0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0

√
2

2
W 0 kW 0 0 0 0

1

2
V 0

0 0 0 0 0 0 0 0 0 1



,

where V := e−2kε + e2kε and W := e−2kε − e2kε. In order to classify the one-
dimensional Lie subalgebras of Noether symmetries associated to the geodesic
Lagrangian (2.18), the following cases are planned such that in each case, by
acting a finite number of the adjoint representations M ε

i (i = 1, . . . , 10) on X, by
proper selection of parameters εi in each stage, it is gradually tried to make the
coefficients of X vanish and to acquire the most simple form of X.
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Let X =
∑10

i=1 aiXi. Then
F ε10
10 ◦ F ε9

9 ◦ · · · ◦ F ε1
1 : X 7→[

a1 +
(
− 1

2
ε6 cos(ε8) +

1

2
ε7 sin(ε8)

)
a3 −

1

2

(
ε6 sin(ε8)− ε7 cos(ε8)

)
a5

]
X1

+a2X2 +
[
cos(ε8)a3 + sin(ε8)a5

]
X3 +

[
a2

(√
2
(
e−2kε9 + e2kε9 − 2

)
k

+

√
2
(1
2
e−2kε9 +

1

2
e2kε9

)(
e−2kε10 + e2kε10 − 2

)
4k

)
+ a4

(1
2
e−2kε9 +

1

2
e2kε9

)

×
(1
2
e−2kε10 +

1

2
e2kε10

)
+
a9

(1
2
e−2kε9 +

1

2
e2kε9

)(
e−2kε10 − e2kε10

)
4k

+
a10

(
e2kε9 − e−2kε9

)
4k

]
X4 +

[
− a3 sin(ε8) + a5 cos(ε8)

]
X5

+

[
1

2
ε1 cos(ε8)a3 +

1

2
ε1 sin(ε8)a5 + cos(ε8)a6 + sin(ε8)a7

]
X6

+

[
− 1

2
ε1 sin(ε8)a3 +

1

2
ε1 cos(ε8)a5 − sin(ε8)a6 + cos(ε8)a7

]
X7

+

[
a3

(
ε5 cos(ε8) + ε3 sin(ε8)

)
+ a5

(
ε5 sin(ε8)− ε3 cos(ε8)

)
+ a6

(
ε7 cos(ε8)

+ε6 sin(ε8)
)
+ a7

(
ε7 sin(ε8)− ε6 cos(ε8)

)
+ a8

]
X8 +

[
a2

(
−

√
2

2
sin(ε4)

×
(
e2kε9 − e−2kε9

)
−

√
2

4
sin(ε4)

(
e2kε9 − e−2kε9

)(
e2kε10 + e−2kε10 − 2

)

−
√
2

2
cos(ε4)

(
e2kε10 − e−2kε10

))
+ a4

(
− k sin(ε4)

(
e−2kε9 + e2kε9

)
×
(1
2
e−2kε10 +

1

2
e2kε10

)
− k cos(ε4)

(
e2kε10 − e−2kε10

))

+a9

(
− 1

4
sin(ε4)

(
− e−2kε9 + e2kε9

)(
e−2kε10 − e2kε10

)
+cos(ε4)

(1
2
e2kε10 +

1

2
e−2kε10

))
− a10 sin(ε4)

(1
2
e2kε9 +

1

2
e−2kε9

)]
X9

+

[
a2

(
−

√
2

2
cos(ε4)

(
e2kε9 − e−2kε9

)
+

√
2

4
cos(ε4)

(
e2kε9 − e−2kε9

)
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×
(
e2kε10 + e−2kε10 − 2

)
−

√
2

2
sin(ε4)

(
e2kε10 − e−2kε10

))

+a4

(
k cos(ε4)

(
e2kε9 − e−2kε9

)(1
2
e−2kε10 +

1

2
e2kε10

)
−k sin(ε4)

(
e2kε10 − e−2kε10

))
+ a9

(
1

4
cos(ε4)

(
− e−2kε9 + e2kε9

)
×
(
e−2kε10 − e2kε10

)
+

1

2
sin(ε4)

(
e2kε10 + e−2kε10

))

+a10 cos(ε4)
(1
2
e2kε9 +

1

2
e−2kε9

)]
X10

Now, we can simplify X as follows:
If a5 6= 0 and a10 6= 0, then we can make the coefficients of X3, X7, X8, and

X9 vanish by F ε8
8 , F ε1

1 , F ε3
3 , and F ε4

4 . By setting ε8 = − arctan
(a3
a5

)
, ε1 = −2a7

a5
,

ε3 =
a8
a5

, and ε4 = arctan
( a9
a10

)
, respectively, and scaling X if necessary, we can

assume that a5 = 1. So, X is reduced to the case (1).
If a5 6= 0 and a10 = 0, then we can make the coefficients of X3, X7 and X8

vanish by F ε8
8 , F ε1

1 , and F ε3
3 . By setting ε8 = − arctan

(a3
a5

)
, ε1 = −2a7

a5
, and

ε3 =
a8
a5

, respectively, and Scaling X if necessary, we can assume that a5 = 1. So,
X is reduced to the case (2).

If a5 = 0, a3 6= 0, and a9 6= 0, then we can make the coefficients of X6, X8

and X10 vanish by F ε1
1 , F ε5

5 , and F ε4
4 . By setting ε1 = −2a6

a3
, ε5 = −a8

a3
, and

ε4 = − arctan
(a10
a9

)
, respectively, and scaling X if necessary, we can assume

that a3 = 1. So, X is reduced to the case (3).
If a5 = 0, a3 6= 0 and a9 = 0, then we can make the coefficients of X6 and X8

vanish by F ε1
1 and F ε5

5 . By setting ε1 = −2a6
a3

, and ε5 = −a8
a3

, respectively, and
scaling X if necessary, we can assume that a3 = 1. So, X is reduced to the case
(4).

If a5 = 0, a3 = 0, a7 6= 0 and a9 6= 0, then we can make the coefficients of X8,
X6, and X10 vanish by F ε6

6 , F ε8
8 and F ε4

4 . By setting ε6 =
a8
a7

, ε8 = − arctan
(a6
a7

)
,

and ε4 = − arctan
(a10
a9

)
, respectively, and scaling X if necessary, we can assume

that a7 = 1. So, X is reduced to the case (5).
If a5 = 0, a3 = 0, a7 6= 0, and a9 = 0, then we can make the coefficients of

X8 and X6 vanish by F ε6
6 and F ε8

8 . By setting ε6 =
a8
a7

, and ε8 = − arctan
(a6
a7

)
,
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respectively, and scaling X if necessary, we can assume that a7 = 1. So, X is
reduced to the case (6).

If a5 = 0, a3 = 0, a7 = 0, a6 6= 0, and a10 6= 0, then we can make the coefficients
of X8 and X9 vanish by F ε7

7 and F ε4
4 . By setting ε7 = −a8

a6
and ε4 = arctan

( a9
a10

)
,

respectively, and scaling X if necessary, we can assume that a6 = 1. So, X is
reduced to the case (7).

If a5 = 0, a3 = 0, a7 = 0, a6 6= 0, and a10 = 0, then we can make the coefficient
of X8 vanish by F ε7

7 . By setting ε7 = −a8
a6

and scaling X if necessary, we can
assume that a6 = 1. So, X is reduced to the case (8).

If a5 = 0, a3 = 0, a7 = 0, a6 = 0, and a10 6= 0, then we can make the coefficient
of X9 vanish by F ε4

4 . By setting ε4 = arctan
( a9
a10

)
and scaling X if necessary,

we can assume that a10 = 1. So, X is reduced to the case (9).
If a5 = 0, a3 = 0, a7 = 0, a6 = 0, and a10 = 0, then X is reduced to the case

(10). □

4. Classification of Killing vector fields

Killing vector fields can be regarded as one of the most significant types of
symmetries and are considered as the smooth vector fields, which preserve the
metric tensor. These vector fields are extensively applied in various physical
fields including in classical mechanics and are closely related to conservation
laws. Specifically, remarkable applications of Killing vector fields in relativistic
theories are undeniable. The noticeable fact is that the flow corresponding to
a Killing vector field generates a symmetry in a way that if each point moves
on an object at the same distance in the direction of the Killing vector field
then distances on the object will not distorted at all. In particular, a vector
field K is a Killing field if the Lie derivative with respect to K of the metric g
vanishes. Moreover, the Lie bracket of two Killing vector fields is still a Killing
field, and the Killing fields on a manifold M thus form a Lie subalgebra of vector
fields on M , which can be considered as the isometry group of the manifold
whenever M is complete [11]. Taking into account the significant properties
declared above, one naturally expects Killing vectors to be of substantial use in the
study of geodesic motion. When one investigates the Lagrangian explaining the
motion of a particle, one can realize that Killing vectors are the symmetries of the
system and lead to conserved canonical momenta analogous to cyclic coordinates
in classical mechanics. Furthermore, one can also try to obtain another conserved
quantity related to the spacetime itself if the background metric contains globally
well defined Killing vectors.

Let (M, g) be an arbitrary Lorentzian manifold and let = be a smooth vector
field on M . A curve γ : R −→ M whose tangent vector at every point p ∈ γ
is equal to =, is denoted by an integral curve of =. In other words, for all
smooth functions f : M −→ R, the following relation is satisfied: =p(f) =
d

d℘

(
foγ(℘)

) ∣∣∣
p
, where ℘ parameterizes the curve γ. For a given local coordinate

system xµ on M , this is equivalent to that the components of = in that coordinate
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system must satisfy =µ
p =

d

d℘
xµ
(
γ(℘)

) ∣∣∣
p
. Taking into account the fact that every

point p ∈ M lies on a unique integral curve, the set of integral curves create a
congruence whenever = is smooth and everywhere nonzero. Significantly, for a
given congruence a one-parameter family of diffeomorphisms from M onto itself
can be associated, which is described as follows: Corresponding to each s ∈ R,
designate a map Fs : M −→ M , where Fs(p) is the point parameter distance s
from p along =; that is, if p = γ(℘0), then Fs(p) = γ(℘0 + s). Furthermore, from
the algebraic point of view, considering the composition law FsoFt = Fs+t, the
identity F0, and the inverse (Fs)

−1 = F−s, these transformations construct an
abelian group. Thus the notion of the Lie derivative Lℑ along the vector field =
is created. When applied at a point p to a vector K it is defined by the following
identity: (

LℑK
)
p
= limδ℘−→0

Kp − (Fδ℘)∗KF−δ℘
(p)

δ℘
(4.1)

where (Fs)∗ projects a vector defined at p to a vector defined at Fs(p) and is
denoted by the push-forward corresponding to the group element Fs. Moreover,
it can be illustrated that the Lie derivative of a vector is equal to the bracket:(
LℑK

)
p
= [=, K]p, where [X,Y ]µ = XνY µ

,ν − Y νXµ
,ν . Analogous to (4.1), the Lie

derivative can be applied appropriately to any tensor on M . Specifically to a
metric tensor g on M the Lie derivative is defined by(

Lℑg
)
p
= limδ℘−→0

gp − (Fδ℘)
∗gFδ℘

(p)

δ℘
. (4.2)

The remarkable fact is that the Lie derivative of g entails the pull-back F∗
s ,

which maps a covector at Fs(p) to a covector at p, mainly due to the fact that
the components of g transform covariantly. It can be demonstrated that(

Lℑg
)
µν

= ∇µ=ν +∇ν=µ. (4.3)
Meanwhile, if the metric does not change under the transformation Fs, then the
transformation is called an isometry and the metric possesses a symmetry. In
this case, Lℑg = 0, which leads to the following identity:

∇µ=ν +∇ν=µ = 0. (4.4)
This relation is denoted by Killing’s equation and a vector = that satisfies (4.4)
is called a Killing vector. It is noticeable that this identity contains the metric
implicity, which is hidden in ∇. In addition, the symmetries of a spacetime
explicitly leads to determining the vectors, which satisfy the Killing equation;
this can be thoroughly fulfilled either by inspection or via integrating (4.4). An
isometry is a distance preserving mapping among different spaces. In the case of
a Lorentzian manifold (M, g), the transformed metric g̃ij(x̃) has to be the similar
function of its argument x̃ as the original metric gij(x) of its argument x, that
is, g̃ij(x) = gij(x). The metric under an arbitrary transformation transforms as
follows:

g̃ij(x̃) =
∂x̃i

∂xk
∂x̃j

∂xl
gkl(x) or gij(x) =

∂xi

∂x̃k
∂xj

∂x̃l
g̃kl(x̃). (4.5)
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For an isometry, the following equality is satisfied:

g̃ij(x) = gij(x) =
∂xi

∂x̃k
∂xj

∂x̃l
g̃kl(x̃). (4.6)

Now, by imposing an infinitesimal coordinate transformation x̃i = xi + ε=(xk),
ε << 1 on the metric, we have

g̃ij(x̃) =
∂x̃i

∂xk
∂x̃j

∂xl
gkl(x) =

(
δik + ε=i

,k

)(
δlj + ε=j

,l

)
gkl(x)

= gij(x) + ε
(
=i,j + =j,i

)
+O(ε2).

(4.7)

A Taylor expansion results
g̃ij(x̃) = g̃ij(x+ ε=) = g̃ij(x) + ε=k∂kg̃

ij(x) +O(ε2). (4.8)
Setting equal relations (4.7) and (4.8), it is deduced that

gij(x) + ε
(
=i,j + =j,i

)
= g̃ij(x) + ε=k∂kg̃

ij(x). (4.9)
Moreover, it is observed that the metric is kept invariant if

=i,j + =j,i −=k∂kg
ij = 0, (4.10)

or equivalently,
gjk∂k=i + gik∂k=j −=k∂kg

ij = 0. (4.11)
Consequently, the terms involving connection coefficients totally vanish via ex-
pressing partial derivatives as covariant ones. Subsequently, taking into account
the identity (4.11), the Killing equations (4.4) are deduced again. The vectors =
satisfying (4.4) are called Killing vectors of the metric. Hence, moving along a
Killing vector field, the metric is preserved invariant. Although equation (4.11)
involves only partial derivatives, it is also invariant under arbitrary coordinate
transformations mainly due to the fact that relation (4.4) is tensor equation. As
mentioned above, without the connection requirement, one can define the deriv-
ative of an arbitrary tensor along a vector field denoted by Lie derivative. In
classical physics, the presence of symmetries is closely related to the existence
of conservation laws. In the following, we analyze the geodesic motion of test
particles [6, 33]. Assume the action of a particle in a spacetime (M, g), which is
moving on a curve γ with parameter ℘ and endpoints A and B. Select a coordi-
nate system xµ and designate the coordinates of the curve by xµ(℘). Then the
action for γ is defined by

I(xµ) = m

∫
dτ = m

∫ ℘B

℘A

√
−gµν

dxµ

d℘

dxν

d℘
. (4.12)

If the curve is deformed by a small amount δxµ(℘) and the action is required
to be stationary with respect to the declared variation, then the Euler–Lagrange
equations are resulted as follows:

δI

δxµ
= 0 =⇒ ∇(℘)ẋ

µ ≡ d

d℘
ẋµ + Γµρσẋ

ρẋσ ∝ ẋµ. (4.13)
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The dot indicates differentiation with respect to ℘. Furthermore, the solutions of
(4.13) are the geodesics of (M, g). In particular, if the right hand side of above
equation vanishes, that is, ∇(℘)ẋ

µ = 0, then the geodesics is called to be affinely
parameterized and ℘ is considered as an affine parameter. Besides, if we insert
℘ = τ , then (4.13) simplifies to

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0. (4.14)

In order to thoroughly determine the geodesic curves, we can cast (4.12) into a
more effective structure via inserting an independent function e(℘) denoted by
the auxiliary field:

I(xµ, e) =
1

2

∫ ℘B

℘A

d℘
[
e−1(℘)gµν ẋ

µẋν −m2e(℘)
]
. (4.15)

It is noticeable that from δI

δe
= 0 we obtain

−e−2gµν ẋ
µẋν −m2 = 0 =⇒ e =

1

m

√
−gµν ẋµẋν =

1

m

dτ

d℘
(4.16)

and from δI

δxµ
the following identity is deduced:

d

d℘
ẋµ + Γµρσẋ

ρẋσ =
(
e−1ė

)
ẋµ. (4.17)

Thus the equivalence of (4.12) to (4.15) is illustrated. Moreover, it is explicitly
observed that relation (4.17) is precisely the geodesic equation ∇(℘)ẋ

µ = (e−1ė)ẋµ

and (4.16) relates the auxiliary field e to the choice of parameter ℘. Suppose now
an infinitesimal translation of the curve γ along a Killing vector field K, that is,
leaving the auxiliary field unchanged. In the coordinate chart xµ, this associates
with xµ −→ xµ + αKµ, where α is an infinitesimal constant. Accordingly, due to
(4.15), the action will be varied as follows:

δI = I
(
xµ + αKµ, e

)
− I
(
xµ, e

)
=
α

2

∫
d℘

[
e−1
(
gµνK̇

µẋν + gµν ẋ
µK̇ν + gµν,σẋ

µẋνKσ
)]
.

(4.18)

Taking into account the fact that K̇µ =
d

dτ
Kµ =

dxν

dτ
∂νK

µ = ẋνKµ
,ν , we have

δI =
α

2

∫
d℘

[
e−1
(
gµν ẋ

σẋνKµ
,σ + gµν ẋ

µẋσKν
,σ + gµν,σẋ

µẋνKσ
)]

=
α

2

∫
d℘

[
e−1ẋµẋν

(
gσνK

σ
,µ + gµσK

σ
,ν + gµν,σK

σ
)]
.

(4.19)

Since the vector field K satisfies the Killing’s equation, we have:

δI =
α

2

∫
d℘

[
e−1ẋµẋν

(
∇µKν +∇νKµ

)]
= 0. (4.20)
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Consequently, it is demonstrated that K being Killing results a symmetry of
the particle action. Significantly, it can be proved that corresponding to this
symmetry there exists a quantity (charge), which is totally conserved along the
geodesic curves. Assume that K is a Killing vector field and that δxµ = αKµ is
a small variation generated by K. As discussed above, such variations leave the
action invariant, that is, δI = 0. For simplicity, we set ℘ = τ , and introducing
the Lagrangian density L as I =

∫
Ld℘, then we have

∂L

∂xµ
δxµ +

∂L

∂ẋµ
δẋµ = 0. (4.21)

Now, by applying the Euler–Lagrange equations, ∂L

∂xµ
=

d

dτ

∂L

∂ẋµ
= ṗµ, where pµ

is the momentum of the particle and according to (4.16) is defined by pµ =
∂L

∂ẋµ
=

e−1gµν ẋ
ν = mgµν

dxν

dτ
. Therefore, the equation (4.21) can be rewritten as follows:

0 = ṗµαK
µ + pµαK̇

µ = α
d

dτ

(
Kµpµ

)
= α

d

dτ
Q. (4.22)

As a consequence, it is proved that the quantity Q = kµpµ is conserved along
geodesics. This fact can be considered as a particular case of a much more
general theorem of Noether, which states that symmetries in a typical variational
principle lead to conservation laws (refer to [6, 11, 33] for more details). In the
following, an exhaustive analysis of Killing vector fields for the metric (1.21) is
presented by re-expressing the metric in the orthogonal frame.

4.1. Computation of the Killing vector fields for solution (1.21). In this
section, we apply an orthogonal frame to obtain the Killing vector fields for the
metric (1.21). First of all, we set up a five-dimensional spacetime with coordinates[
t, r, z, ϕ, ψ

]
denoted by ϖI given by

ϖI =

[
1√

k2r2 + 1
dr, dz, r

√
k2r2 + 1dx, dy, dt+

√
2kr2dx

]
. (4.23)

Then we define a coframe and calculate the structure equations for this coframe
as follows:

dΘ1 = 0, dΘ2 = 0, dΘ3 =
2k2r2 + 1

r
√
k2r2 + 1

Θ1 ∧Θ3,

dΘ4 = 0, dΘ5 = 2
√
2k Θ1 ∧Θ3.

(4.24)

Taking into account the pentad (1.10), the metric (1.21) is expressed by (1.11) in
the orthogonal frame. Subsequently, the following seven Killing vectors for the
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metric (1.21) are resulted in the adapted frame:

(1) : K1 = −
√
2 cos(x)

4k
E1 +

√
2 sin(x)

(
2k2r2 + 1

)
4k

E3 + rQ sin(x) E5,

(2) : K2 =

√
2 sin(x)

4k
E1 +

√
2 cos(x)

(
2k2r2 + 1

)
4k

E3 + rQ cos(x) E5,

(3) : K3 = E5,

(4) : K4 =
r
√
2k2r2 + 2

2k
E3 + r2 E5,

(5) : K5 = y E2 − z E4,

(6) : K6 = −E4,

(7) : K7 = −E2,

(4.25)

where Q :=
√
k2r2 + 1. Furthermore, here are the structure equations for the Lie

algebra of Killing vectors denoted by KI:

[K1,K2] = −
√
2

2
k K4 −

√
2

4k
K3, [K1,K4] = −

√
2

2k
K2,

[K2,K4] =

√
2

2k
K1, [K5,K6] = −K7, [K5,K7] = K6.

(4.26)

Significantly, by considering the following basis for the original Lie algebra of
Killing vector fields KI, it will decompose into an internal direct sum of subalge-
bras, where each summand is indecomposable,{

F1,F2,F3,F4,F5,F6,F7

}
:=

{
K1,K2,K3 + 2k2 K4,K5,K6,K7,K3

}
.

The expression of KI in this new basis described above, will be denoted by K̃I.
Meanwhile, AI is a matrix, which defines a Lie algebra isomorphism from KI to
K̃I (the Lie algebra defined by the direct sum of indecomposable Lie subalgebras)
given by

AI =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0
1

2k2
0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 1 − 1

2k2
0 0 0
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The commutator table of K̃I is illustrated in Table 3, where the entry in the ith
row and jth column is defined as [Fi, Fj] = FiFj − FjFi, i, j = 1, . . . , 7.

Table 3. Commutation relations satisfied by infinitesimal gener-
ators for the Lie algebra K̃I

F1 F2 F3 F4 F5 F6 F7

F1 0 −
√
2

4k
F3 −

√
2k F2 0 0 0 0

F2 −
√
2

4k
F3 0

√
2k F1 0 0 0 0

F3

√
2k F2 −

√
2k F1 0 0 0 0 0

F4 0 0 0 0 −F6 F5 0

F5 0 0 0 F6 0 0 0

F6 0 0 0 −F5 0 0 0

F7 0 0 0 0 0 0 0

5. Computation of the conservation laws via Noether’s theorem

A significant systematic way of determining conservation laws for systems of
Euler–Lagrange equations whenever their Noether symmetries are known is via
Noether’s theorem [25]. This theorem is fundamentally relied on the availability of
a Lagrangian and the corresponding Noether symmetries, which leave the action
integral invariant.

Consider the action integral J [U ] (2.3) and an infinitesimal change of U given
by U(x) −→ U(x) + εv(x), where v(x) is an arbitrary function such that v(x)
and its derivatives to order k − 1 vanish on the boundary ∂Ω of the domain Ω.
Thus the corresponding variation in the Lagrangian L[U ] is expressed as follows
[3]:

δL = L
(
x, U + εv, ∂U + ε∂v, . . . , ∂kU + ε∂kv

)
− L

(
x, U, ∂U, . . . , ∂kU

)
= ε

(
∂L
[
U
]

∂Uσ
vσ +

∂L
[
U
]

∂Uσ
j

vσj + · · ·+
∂L
[
U
]

∂Uσ
j1···jk

vσj1···jk

)
+O

(
ε2
)
.

(5.1)

Then after applying integration by parts repeatedly, it can be illustrated that

δL = ε

(
vσEUσ

(
L
[
U
])

+DiW
i
[
U, v

])
+O

(
ε2
)
, (5.2)

where EUσ is the Euler operator with respect to Uσ given by

EUσ =
∂

∂Uσ
−Dj

∂

∂Uσ
j

+ · · ·+ (−1)kDj1 · · ·Djk

∂

∂Uσ
j1...jk

+ · · · (5.3)
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and

W i
[
U, v

]
= vσ

(
∂L
[
U
]

∂Uσ
i

+ · · ·+ (−1)k−1Dj1 · · ·Djk−1

∂L
[
U
]

∂Uσ
ij1···jk−1

)

+vσj1

(
∂L
[
U
]

∂Uσ
i

+ · · ·+ (−1)k−2Dj2 · · ·Djk−1

∂L
[
U
]

∂Uσ
ij1j2···jk−1

)

+ · · ·+ vσj1···jk−1

∂L
[
U
]

∂Uσ
ij1j2···jk−1

.

(5.4)

According to identity (5.2) and the divergence theorem, the corresponding vari-
ation in the action integral J [U ] (2.3) is defined as follows [3]:

δJ = J
[
U + εv

]
− J

[
U
]
=

∫
∆

δLdx

= ε

∫
∆

(
vσEUσ

(
L
[
U
])

+DlW
l
[
U, v

])
+O

(
ε2
)

= ε

(∫
∆

(
vσEUσ

(
L
[
U
])
dx+

∫
∂∆

W l
[
U, v

]
nldS

)
+O

(
ε2
)
,

(5.5)

where n =
(
n1, . . . , nn

)
is the unit outward normal vector to the boundary ∂∆

and
∫
∂∆

indicates the surface integral over ∂∆. Therefore, it follows that if
U = U(x) extremizes the action integral (2.3), then for an arbitrary v(x) defined
on the domain ∆, the O(ε) term of ∂J must vanish, and as a consequence, we
have ∫

∆

vσEuσ

(
L
[
u
])
dx = 0. (5.6)

Ultimately, it is deduced that if U = u(x) extremizes the action integral J [U ]
(2.3), then u(x) must satisfy the following partial differential equation system:

Euσ

(
L
[
U
])

=
∂L
[
U
]

∂uσ
+ · · ·+ (−1)kDj1 · · ·Djk

∂L
[
U
]

∂Uσ
j1···jk

= 0, σ = 1, . . . ,m. (5.7)

Equations (5.7) are denoted by the Euler–Lagrange equations satisfied by an
extremum U = u(x) of the action integral (2.3). The one-parameter Lie group
of point transformations (2.1) is equivalent to the one-parameter family of local
transformations:

(
x∗
)i

= xi, i = 1, . . . , n,(
U∗)µ = Uµ + ε

[
Ωµ(x, U)− Uµ

i ξ
i(x, U)

]
+O(ε2), µ = 1, . . . ,m,

(5.8)

The infinitesimal generator for the one-parameter family of transformations (5.8)
is defined by

X̂ =
[
Ωµ(x, U)− Uµ

i ξ
i(x, U)

] ∂

∂Uµ
. (5.9)
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and X̂(k) denotes the corresponding kth prolonged infinitesimal generator. By im-
posing the transformation (5.8), the corresponding infinitesimal variation U(x) −→
U(x) + εv(x) has components, vµ(x) = Ω̂µ[U ] = Ωµ(x, U) − Uµ

i ξ
i(x, U) in terms

of the transformation (5.8). Furthermore, from the group property of (5.8) it is
deduced that

δL = εX̂(k)L[U ] +O(ε2) =⇒
∫
∆

δLdx = ε

∫
∆

X̂(k)L[U ]dx+O(ε2). (5.10)

Accordingly, after comparing expression (5.10) to identity (5.5) with vµ(x) =

Ω̂µ[U ] = Ωµ(x, U)− Uµ
i ξ

i(x, U), the following significant identity is resulted [3]:
X̂(k)L[U ] ≡ Ω̂µ[U ]EUµ(L[U ]) +DiW

i
[
U, Ω̂[U ]

]
, (5.11)

where W i
[
U, Ω̂[U ]

]
is expressed by (5.4) with the trivial substitutions. Now, as-

sume that X(k) is the kth prolonged infinitesimal generator of the one-parameter
Lie group of point transformations (2.1) and that X̂(k) is the kth prolonged in-
finitesimal generator of the equivalent one-parameter family of transformations
(5.8). Then for an arbitrary function F [U ] = F

(
x, U, ∂U, . . . , ∂kU

)
, the following

relation is satisfied:
X(k)F [U ] + F [U ]Diξ

i(x, U) ≡ X̂(k)F [U ] +Di

(
F [U ]ξi(x, U)

)
. (5.12)

Now, by inserting F [U ] = L[U ] in the identity (5.12) and from (2.8), for arbitrary
functions U(x), we have

X̂(k)L[U ] +Di

(
L[U ]ξi(x, U)

)
≡ 0. (5.13)

Thus substitution for X̂(k)L[U ] in (5.13) through (5.11) yields the following iden-
tity:

Ω̂µ[U ]EUµ

(
L[U ]

)
≡ −Di

(
ξi(x, U)

)
L[U ] +W i

[
U, Ω̂[U ]

]
. (5.14)

In other words,
{
Ω̂µ[U ]

}m
µ=1

is a set of local multipliers of the Euler–Lagrange
system (5.6). Then the left hand side of the identity (5.14) vanishes. Ultimately,
this yields the following local conservation law

Di

(
ξi(x, U)L[u] +W i

[
u, Ω̂[u]

])
= 0 (5.15)

for any solution u = Θ(x) of the Euler–Lagrange system (5.6) (refer to [3] for
more complete details). Specifically, if X (2.12) is a Noether point symmetry
corresponding to the Lagrangian L(s, xµ, ẋµ), then

T = ξL+ (Ωµ − ẋµξ)
∂L

∂ẋµ
− A (5.16)

is a first integral of (2.9) corresponding to X, where A = A(s, xµ) is the gauge
function [13, 15].

Now, by applying identity (5.16), we will compute all the conserved flows cor-
responding to the resulted Noether symmetries for solution (1.21). Moreover,
in the following, the conserved flows associated to those infinitesimal generators
obtained via constructing an optimal system of one-dimensional subalgebras of
the Lie algebra of Noether symmetries (as demonstrated in Theorem 3.1) are
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calculated. Each of these resulted conserved quantities yields a conservation law
for the system of geodesic equations.

5.1. Computation of the Noether conservation laws for solution (1.21).
In this section, first of all, we will compute all the conserved flows corresponding
to the Noether symmetries X1, . . . ,X10 resulted in Corollary 2.3. Each of these
conserved quantities yields a conservation law for the system of geodesic equations
(2.19). For example, for the Noether symmetry X1 =

∂

∂s
, we get the following

conserved vector:
T 1 = ξL+ (Ω1 − ṫξ)∂L

∂ṫ
+ (Ω2 − ṙξ)∂L

∂ṙ
+ (Ω3 − żξ)∂L

∂ż

+(Ω4 − φ̇ξ)∂L
∂ϕ̇

+ (Ω5 − ψ̇ξ)∂L
∂ψ̇

− A

= −ṫ2 + ṙ2

1 + k2r2
+ ż2 − (k2r4 − r2)ϕ̇2 − 2

√
2kr2ṫϕ̇+ ψ̇2 − c.

Similarly, we have computed the conserved vectors corresponding to the other
Noether symmetries. The results are presented in Table 4. In the following,

Table 4. Conservation laws of (2.19) resulted from the Noether’s theorem
Noether Symmetry Conserved Vectors

1 X1 = ∂s T 1 = −ṫ2 + ṙ2

1 + k2r2
+ ż2 − (k2r4 − r2)ϕ̇2 − 2

√
2kr2ṫϕ̇+ ψ̇2 − c

2 X2 = ∂t T 2 = 2ṫ+ 2
√
2 kr2 ϕ̇− c

3 X3 = ∂z T 3 = −2ż − c

4 X4 = ∂ϕ T 4 = 2(k2r4 − r2)ϕ̇+ 2
√
2 kr2ṫ− c

5 X5 = ∂ψ T 5 = −2ψ̇ − c

6 X6 = −1
2
s∂z T 6 = sż − z − c

7 X7 = −1
2
s∂ψ T 7 = sψ̇ − ψ − c

8 X8 = −ψ∂z + z∂ψ T 8 = 2ψż − 2zψ̇ − c

9 X9 =

√
2 kr cosϕ√
1 + k2r2

∂t+
√
1 + k2r2 sinϕ ∂r T 9 =

√
2 rk cosϕ(2ṫ+ 2

√
2 kr2ϕ̇)√

1 + k2r2
− 2 sinϕ

√
1 + k2r2

1 + k2r2
ṙ

+
(2k2r2 + 1) cosϕ

r
√
1 + k2r2

∂ϕ +
2(2k2r2 + 1) cosϕ

(
(k2r4 − r2)ϕ̇+

√
2 kr2ṫ

)
r
√
1 + k2r2

− c

10 X10 = −
√
2 kr sinϕ√
1 + k2r2

∂t+
√
1 + k2r2 cosϕ ∂r T 10 = −

√
2 rk sinϕ(2ṫ+ 2

√
2 kr2ϕ̇)√

1 + k2r2
− 2 cosϕ

√
1 + k2r2

1 + k2r2
ṙ

−(2k2r2 + 1) sinϕ

r
√
1 + k2r2

∂ϕ −
2(2k2r2 + 1) sinϕ

(
(k2r4 − r2)ϕ̇+

√
2 kr2ṫ

)
r
√
1 + k2r2

− c

the conserved flows associated to those infinitesimal generators obtained via con-
structing an optimal system of one-dimensional subalgebras of the Lie algebra of
Noether symmetries (as demonstrated in Theorem 3.1) are calculated.
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(1) : For the symmetry operator,

a1X1 + a2X2 + a4X4 +X5 + a6X6 + a10X10

= a1
∂

∂s
+

(
a2 − a10

√
2rk sinφ√
k2r2 + 1

)
∂

∂t
+

(
a10 cosφ

√
k2r2 + 1

)
∂

∂r
− a6

(s
2

) ∂
∂z

+

(
a4 − a10

(
2k2r2 + 1

)
sinφ

r
√
k2r2 + 1

)
∂

∂φ
+

∂

∂ψ
, A = z + c.

By applying Noether’s theorem, the following conservation law is resulted:

Ds

(
a1

(
ṫ2 − ṙ2

Q2
− ż2 +

(
2k2r4 − r2Q2

))
φ̇2 + 2

√
2kr2ṫφ̇− ψ̇2

)

+
(
2ṫ+ 2

√
2kr2φ̇

)(
a2 − a1ṫ−

√
2a10rk sinφ

Q

)
−

2
(
a10 cosφQ− a1ṙ

)
ṙ

k2r2 + 1

−2ż
(
− 1

2
a6s− a1ż

)
+

(
a4 −

a10

(
2k2r2 + 1

)
sinφ

rQ
− a1φ̇

)

×
(
2φ̇
(
2k2r4 − r2Q2 + 1

))
+ 2

√
2kr2ṫ

)
− 2ψ̇

(
1− a1ψ̇

)
− z − c

)
= 0.

(2) : For the symmetry operator,

a1X1 + a2X2 + a4X4 +X5 + a6X6 + a9X9

= a1
∂

∂s
+

(
a2 + a9

√
2rk cosφ√
k2r2 + 1

)
∂

∂t
+

(
a9 sinφ

√
k2r2 + 1

)
∂

∂r
− a6

(s
2

) ∂
∂z

+

(
a4 + a9

(
2k2r2 + 1

)
cosφ

r
√
k2r2 + 1

)
∂

∂φ
+

∂

∂ψ
, A = z + c.

By applying Noether’s theorem, the following conservation law is resulted:

Ds

(
a1

(
ṫ2 − ṙ2

k2r2 + 1
− ż2 +

(
2k2r4 − r2

(
k2r2 + 1

))
φ̇2 + 2

√
2kr2ṫφ̇− ψ̇2

)

+
(
2ṫ+ 2

√
2kr2φ̇

)(
a2 − a1ṫ−

√
2a9rk cosφ

Q

)
−

2
(
a9 sinφQ− a1ṙ

)
ṙ

Q2

−2ż
(
− 1

2
a6s− a1ż

)
+

(
a4 +

a9

(
2k2r2 + 1

)
cosφ

rQ
− a1φ̇

)
×
(
2φ̇
(
2k2r4 − r2

(
Q2 + 1

))
+ 2

√
2kr2ṫ

)
− 2ψ̇

(
1− a1ψ̇

)
− z − c

)
= 0.
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(3) : For the symmetry operator

a1X1 + a2X2 +X3 + a4X4 + a7X7 + a9X9

= a1
∂

∂s
+

(
a2 + a9

√
2rk cosφ√
k2r2 + 1

)
∂

∂t
+

(
a9 sinφ

√
k2r2 + 1

)
∂

∂r
+

∂

∂z

+

(
a4 + a9

(
2k2r2 + 1

)
cosφ

r
√
k2r2 + 1

)
∂

∂φ
−
(
a7
s

2

) ∂

∂ψ
, A = ψ + c.

By applying Noether’s theorem, the following conservation law is resulted:

Ds

(
a1

(
ṫ2 − ṙ2

Q2
− ż2 +

(
2k2r4 − r2

(
Q2
))
φ̇2 + 2

√
2kr2ṫφ̇− ψ̇2

)

+
(
2ṫ+ 2

√
2kr2φ̇

)(
a2 − a1ṫ+

√
2a9rk cosφ

Q

)
−

2
(
a9 sinφQ− a1ṙ

)
ṙ

Q2

−2ż
(
1− a1ż

)
+

(
a4 +

a9

(
2k2r2 + 1

)
cosφ

rQ
− a1φ̇

)
×
(
2φ̇
(
2k2r4 − r2Q2

)
+ 2

√
2kr2ṫ

)
+ 2ψ̇

(1
2
a7s+ a1ψ̇

)
− ψ − c

)
= 0.

(4) : For the symmetry operator,

a1X1 + a2X2 +X3 + a4X4 + a7X7 + a10X10

= a1
∂

∂s
+

(
a2 − a10

√
2rk sinφ√
k2r2 + 1

)
∂

∂t
+

(
a10 cosφ

√
k2r2 + 1

)
∂

∂r
+

∂

∂z

+

(
a4 − a10

(
2k2r2 + 1

)
sinφ

r
√
k2r2 + 1

)
∂

∂φ
−
(
a7
s

2

) ∂

∂ψ
, A = ψ + c.

By applying Noether’s theorem, the following conservation law is resulted:

Ds

(
a1

(
ṫ2 − ṙ2

Q2
− ż2 +

(
2k2r4 − r2Q2

)
φ̇2 + 2

√
2kr2ṫφ̇− ψ̇2

)

+
(
2ṫ+ 2

√
2kr2φ̇

)(
a2 − a1ṫ−

√
2a10 rk sinφ

Q

)
−

2
(
a10 cosφQ− a1ṙ

)
ṙ

Q2

−2ż
(
1− a1ż

)
+

(
a4 −

a10

(
2k2r2 + 1

)
sinφ

rQ
− a1φ̇

)
×
(
2φ̇
(
2k2r4 − r2Q2

)
+ 2

√
2kr2ṫ

)
+ 2ψ̇

(1
2
a7s+ a1ψ̇

)
− ψ − c

)
= 0.
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(5) : For the symmetry operator,

a1X1 + a2X2 + a4X4 +X7 + a9X9

= a1
∂

∂s
+

(
a2 + a9

√
2rk cosφ√
k2r2 + 1

)
∂

∂t
+

(
a9 sinφ

√
k2r2 + 1

)
∂

∂r
+

∂

∂z

+

(
a4 + a9

(
2k2r2 + 1

)
cosφ

r
√
k2r2 + 1

)
∂

∂φ
−
(s
2

) ∂

∂ψ
, A = ψ + c.

By applying Noether’s theorem, the following conservation law is resulted:

Ds

(
a1

(
ṫ2 − ṙ2

Q2
− ż2 +

(
2k2r4 − r2Q2

)
φ̇2 + 2

√
2kr2ṫφ̇− ψ̇2

)

+
(
2ṫ+ 2

√
2kr2φ̇

)(
a2 − a1ṫ+

√
2a9rk cosφ

Q

)
−

2
(
a9 sinφQ− a1ṙ

)
ṙ

Q2

+2a1ż
2 +

(
a4 +

a9

(
2k2r2 + 1

)
cosφ

rQ
− a1φ̇

)
×
(
2φ̇
(
2k2r4 − r2Q2

)
+ 2

√
2kr2ṫ

)
+ 2ψ̇

(1
2
s+ a1ψ̇

)
− ψ − c

)
= 0.

(6) : For the symmetry operator,

a1X1 + a2X2 + a4X4 +X7 + a10X10

= a1
∂

∂s
+

(
a2 − a10

√
2rk sinφ√
k2r2 + 1

)
∂

∂t
+

(
a10 cosφ

√
k2r2 + 1

)
∂

∂r
+

∂

∂z

+

(
a4 − a10

(
2k2r2 + 1

)
sinφ

r
√
k2r2 + 1

)
∂

∂φ
−
(s
2

) ∂

∂ψ
, A = ψ + c.

By applying Noether’s theorem, the following conservation law is resulted:

Ds

(
a1

(
ṫ2 − ṙ2

Q2
− ż2 +

(
2k2r4 − r2Q2

))
φ̇2 + 2

√
2kr2ṫφ̇− ψ̇2

)

+
(
2ṫ+ 2

√
2kr2φ̇

)(
a2 − a1ṫ−

√
2a10 rk sinφ

Q

)
−

2
(
a10Q cosφ− a1ṙ

)
ṙ

Q2

+2ż2a1 +

(
a4 −

a10

(
2k2r2 + 1

)
sinφ

rQ
− a1φ̇

)
×
(
2φ̇
(
2k2r4 − r2Q2

)
+ 2

√
2kr2ṫ

)
+ 2ψ̇

(1
2
s+ a1ψ̇

)
− ψ − c

)
= 0.
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(7) : For the symmetry operator,

a1X1 + a2X2 + a4X4 +X6 + a10X10

= a1
∂

∂s
+

(
a2 − a10

√
2rk sinφ√
k2r2 + 1

)
∂

∂t
+

(
a10 cosφ

√
k2r2 + 1

)
∂

∂r
−
(s
2

) ∂
∂z

+

(
a4 − a10

(
2k2r2 + 1

)
sinφ

r
√
k2r2 + 1

)
∂

∂φ
+

∂

∂ψ
, A = z + c.

By applying Noether’s theorem, the following conservation law is resulted:

Ds

(
a1

(
ṫ2 − ṙ2

Q2
− ż2 +

(
2k2r4 − r2

(
Q2
))
φ̇2 + 2

√
2kr2ṫφ̇− ψ̇2

)

+
(
2ṫ+ 2

√
2kr2φ̇

)(
a2 − a1ṫ−

√
2a10 rk sinφ

Q

)
−

2
(
a10Q cosφ− a1ṙ

)
ṙ

Q2

−2ż
(
− 1

2
a6s− a1ż

)
+

(
a4 −

a10

(
2k2r2 + 1

)
sinφ

rQ
− a1φ̇

)
×
(
2φ̇
(
2k2r4 − r2Q

)
+ 2

√
2kr2ṫ

)
+ 2ψ̇2a1 − z − c

)
= 0.

(8) : For the symmetry operator,

a1X1 + a2X2 + a4X4 +X6 + a9X9

= a1
∂

∂s
+

(
a2 + a9

√
2rk cosφ√
k2r2 + 1

)
∂

∂t
+

(
a9 sinφ

√
k2r2 + 1

)
∂

∂r
−
(s
2

) ∂
∂z

+

(
a4 + a9

(
2k2r2 + 1

)
cosφ

r
√
k2r2 + 1

)
∂

∂φ
+

∂

∂ψ
, A = z + c.

By applying Noether’s theorem, the following conservation law is resulted:

Ds

(
a1

(
ṫ2 − ṙ2

Q2
− ż2 +

(
2k2r4 − r2Q2

)
φ̇2 + 2

√
2kr2ṫφ̇− ψ̇2

)

+
(
2ṫ+ 2

√
2kr2φ̇

)(
a2 − a1ṫ+

√
2a9rk cosφ

Q

)
−

2
(
a9Q sinφ− a1ṙ

)
ṙ

Q2

+2ż
(1
2
s+ a1ż

)
+

(
a4 +

a9

(
2k2r2 + 1

)
cosφ

rQ
− a1φ̇

)
×
(
2φ̇
(
2k2r4 − r2Q2

)
+ 2

√
2kr2ṫ

)
+ 2

√
2kr2ṫ

)
+ 2ψ̇2a1 − z − c

)
= 0.
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(9) : For the symmetry operator,

a1X1 + a2X2 + a4X4 + a8X8 +X10

= a1
∂

∂s
+

(
a2 −

√
2rk sinφ√
k2r2 + 1

)
∂

∂t
+

(
cosφ

√
k2r2 + 1

)
∂

∂r
−
(
a8ψ
) ∂
∂z

+

(
a4 −

(
2k2r2 + 1

)
sinφ

r
√
k2r2 + 1

)
∂

∂φ
+
(
a8z
) ∂
∂ψ

, A = c.

By applying Noether’s theorem, the following conservation law is resulted:

Ds

(
a1

(
ṫ2 − ṙ2

Q2
− ż2 +

(
2k2r4 − r2Q2

)
φ̇2 + 2

√
2kr2ṫφ̇− ψ̇2

)

+
(
2ṫ+ 2

√
2kr2φ̇

)(
a2 − a1ṫ−

√
2rk sinφ

Q

)
−

2
(
cosφQ− a1ṙ

)
ṙ

Q2

+2ż
(
a1ż + a8ψ

)
+

(
a4 −

(
2k2r2 + 1

)
sinφ

rQ
− a1φ̇

)
×
(
2φ̇
(
2k2r4 − r2Q2

)
+ 2

√
2kr2ṫ

)
− 2ψ̇

(
a8z − a1ψ̇

)
ψ̇ − c

)
= 0.

(10) : For the symmetry operator,

a1X1 + a2X2 + a4X4 + a8X8 + a9X9

= a1
∂

∂s
+

(
a2 + a9

√
2rk cosφ√
k2r2 + 1

)
∂

∂t
+

(
a9 sinφ

√
k2r2 + 1

)
∂

∂r
−
(
a8ψ
) ∂
∂z

+

(
a4 + a9

(
2k2r2 + 1

)
cosφ

r
√
k2r2 + 1

)
∂

∂φ
+
(
a8z
) ∂
∂ψ

, A = c.

By applying Noether’s theorem, the following conservation law is resulted:

Ds

(
a1

(
ṫ2 − ṙ2

Q2
− ż2 +

(
2k2r4 − r2Q2

)
φ̇2 + 2

√
2kr2ṫφ̇− ψ̇2

)

+
(
2ṫ+ 2

√
2kr2φ̇

)(
a2 − a1ṫ+

√
2a9rk cosφ

Q

)
−

2
(
a9Q sinφ− a1ṙ

)
ṙ

Q2

+2ż
(
a8ψ + a1ż

)
+

(
a4 +

a9

(
2k2r2 + 1

)
cosφ

rQ
− a1φ̇

)
×
(
2φ̇
(
2k2r4 − r2Q2

)
+ 2

√
2kr2ṫ

)
− 2ψ̇

(
a8z − a1ψ̇

)
− c

)
= 0.
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Conclusion

In recent years, inquiring into rotating fluids in the context of general relativity
has received noteworthy consideration principally after Godel proposed relativis-
tic model of a rotating dust universe. The noticeable point is that stationary
Kaluza–Klein perfect fluid models in standard Einstein theory are not available
in literature. Consequently, obtaining and analyzing such solutions in order to
investigate the influences of dimensionality on the distinct physical parameters is
of special significance. Tikekar and Patel [31] have formulated the Kaluza–Klein
field equations for cylindrically symmetric rotating distributions of perfect fluid.
They have reported a set of physically worthwhile solutions, which is believed to
be the first such Kaluza–Klein solutions and it includes the Kaluza–Klein coun-
terpart of Davidson’s solution. In this paper, we have comprehensively analyzed
the problem of symmetries and conservation laws for some specific solutions of
Kaluza–Klein field equations for stationary symmetric fluid models in standard
Einstein theory. For this purpose, we have considered a physically viable station-
ary Kaluza–Klein perfect fluid solution, which is reported in [31]. The general
theory of relativity, which can be regarded as the field theory of gravitation is
fundamentally governed by the Einstein field equations. These equations are ex-
tremely nonlinear and are demonstrated in terms of the Lorentzian metric gab.
Taking into account this nonlinearity, obtaining their exact solutions is totally
difficult. Hence, it has been one of the basic problems in general relativity to
analyze the solutions of the Einstein field equations by means of the symmetries
they possess. According to the significance of these symmetries in description
of the physics of the gravitational fields, they have been extensively investigated
and a large body of literature is available on them until now. From the geo-
metric point of view, symmetries are so fruitful mainly due to the fact that they
are directly connected to the conservation laws via Noether’s theorem. Since
the geodesic equations follow from the variation of the geodesic Lagrangian de-
fined by the metric, the vector fields that leave the action integral invariant,
namely, Noether symmetries yield conservation laws. Moreover, from the geo-
metric approach the symmetries of a manifold are described by its Killing vectors
or isometries, which form a Lie algebra structure as well. In other words, the
symmetries of the manifold are mainly inherited by the geodesic equations on
it with additional symmetries. They yield quantities that are conserved under
geodesic motion and result in first integrals of the geodesic equations. In the cur-
rent research, first of all, for this specific solution, by considering the Lagrangian
that is determined directly from the metric, we have computed the corresponding
geodesic equations as the Euler Lagrange equations. Secondly, we have obtained
the point generators of the one parameter Lie groups of transformations that
leave invariant the action integral corresponding to the Lagrangian, viz., Noether
symmetries. Moreover, a brief discussion regarding the algebraic structure of the
resulted Lie algebra of Noether symmetries is presented. In addition, a com-
plete classification of symmetry subalgebras for the system of geodesic equations
is proposed. For this purpose, the adjoint representation is applied in order to
construct an optimal system of one-dimensional subalgebras, which provides the
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preliminary classification of group invariant solutions for the system of geodesic
equations. Particularly, by re-expressing the analyzed metric in the orthogonal
coframe, the corresponding Killing vector fields, which can be regarded as one
of the most significant types of symmetries and are considered as the smooth
vector fields, which preserve the metric tensor are thoroughly calculated. Signif-
icantly, for the resulted Lie algebra of Killing vector fields, the associated basis
for the original Lie algebra is determined in which the Lie algebras will be ap-
propriately decomposed into an internal direct sum of subalgebras, where each
summand is indecomposable. Principally, an entire set of conservation laws for
our stationary Kaluza–Klein perfect fluid solution is computed via the celebrated
Noether’s theorem, which is fundamentally relied on the geodesic Lagrangian and
the corresponding Noether symmetries, which leave the action integral invariant.
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2(1918), 235–257. (English translation in Transp. Theory Stat. Phys. 1 (1971) 186–207.

26. P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1986.
27. P.J. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge,

1995.
28. J.M. Overduin and P.S. Wesson, Kaluza-Klein gravity, Physics Reports. 283 (1997) 303–

378.
29. L.V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York,

1982.
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