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THE η-HERMITIAN SOLUTIONS OF SOME QUATERNION
MATRIX EQUATIONS
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Abstract. Let Hn×m be the set of all n ×m matrices over the real quater-
nion algebra. In this paper, we derive the solvability conditions for the com-
mon η-Hermitian solution to the system of two quaternion matrix equations
A1X1A

η∗
1 + B1Y1B

η∗
1 = C1 and A2X2A

η∗
2 + B2Y2B

η∗
2 = C2. As applications,

we obtain necessary and sufficient conditions for the pair of quaternion matrix
equations A1X1A

η∗
1 = C1 and A2X2A

η∗
2 = C2 to have common η-Hermitian

solution. In additions, we establish formulas of the extremal ranks of the
quaternion η-Hermitian matrix expression A2X2A

η∗
2 = C2 with respect to η-

Hermitian solution of A1X1A
η∗
1 = C1, then we derive extremal ranks of the

generalized η-Hermitian Schur complement SA1 = D−Bη∗A−
1 B with respect to

η-Hermitian generalized inverse A−
1 of A1, which is a solution to the quaternion

matrix equation A1X1A
η∗
1 = C1.

1. Introduction and preliminaries

Throughout this paper, R and C stand for the real number field and the complex
number field, respectively. Let Hm×n be the set of m × n matrices over the real
quaternion Algebra:

H =
{
a0 + a1i+ a2j + a3k| i2 = j2 = ijk = −1, a0, a1, a2, a3 ∈ R

}
.

The symbols, A∗ and r (A) stand for the conjugate transpose and the rank of A,
respectively. Also, In denotes the identity matrix of order n. The Moore–Penrose
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generalized inverse of a given matrix A ∈ Hm×n is defined to be the unique matrix
symbolized by A+ and satisfying the following four matrix equations:

(a) AXA = A, (b) XAX = X, (c) (AX)∗ = AX, (d) (XA)∗ = XA.
The Moore–Penrose inverse has been the subject of many researches (see [1, 7]).
Furthermore, LA and RA stand for the two projectors LA = In − A+A and

RA = Im − AA+ induced by A ∈ Hm×n.
A square matrix A is called an η-Hermitian matrix if A = Aη∗ = −ηA∗η, where

η ∈ {i, j,k}. The notion of η-Hermitian quaternion matrices was first studied by
Took, Mandic and Zhang [8] in 2011. There have been some papers to discuss the
topics related to η-Hermitian quaternion matrix (see [9, 4, 11]). For instance, He
and Wang [2] provided some necessary and sufficient conditions for the existence
of solution to the quaternion matrix equation

A1X + (A1X)η∗ +B1Y Bη∗
1 + C1ZC

η∗
1 = D1,

where Y and Z are required to be η-Hermitian matrices. As applications, they
derived necessary and sufficient conditions for the two quaternion matrix equa-
tions:

A1X1A
η∗
1 = C1, (1.1)

A1X1A
η∗
1 +B1Y1B

η∗
1 = C2. (1.2)

to have η-Hermitian solutions. They also presented the general solutions to (1.1)
and (1.2) when they are consistent.

In 2006, Liu [5] gave the solvability conditions to the system of quaternion
matrix equations with two unknowns

A1X1 + Y1B1 = C1,
A2X2 + Y2B2 = C2.

Yu [10] derived extremal ranks of Schur Complement subject to system of
quaternion matrix equations

A1X = C1,
XB1 = C2.

Motivated by the works mentioned above, this paper is organized as follows.
In section 2, we consider the common η-Hermitian solution to the system of
quaternion matrix equations:{

A1X1A
η∗
1 +B1Y1B

η∗
1 = C1,

A2X2A
η∗
2 +B2Y2B

η∗
2 = C2,

(1.3)

where Ci = Cη∗
i ∈ Hmi×mi , Ai ∈ Hmi×n, and Bi ∈ Hmi×k (i = 1, 2) are given

and Xi = Xη∗
i ∈ Hn×n and Yi = Y η∗

i ∈ Hk×k are the unknown matrices. Also, we
derive the solvability conditions for the system of quaternion matrix equations:{

A1X1A
η∗
1 = C1,

A2X2A
η∗
2 = C2,

(1.4)
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where Ci = Cη∗
i ∈ Hmi×mi and Ai ∈ Hmi×n (i = 1, 2) are given, and Xi = Xη∗

i ∈
Hn×n(i = 1, 2) are unknown. In section 3, we first derive extremal ranks of the
quaternion matrix expression f (X) = C2−A2X1A

η∗
2 with respect to η-Hermitian

solution of the quaternion matrix equation (1.1). As an application, we establish
maximal and minimal ranks of the generalized η-Hermitian Schur complement
SA1 = D − Bη∗A−

1 B with respect to η-Hermitian generalized inverse A−
1 of A1,

which is a solution to the quaternion matrix equation (1.1).
The following lemma is due to Marsagalia and Styan [7], which can be easily

generalized to H.

Lemma 1.1. Let A ∈ Hm×n, B ∈ Hm×k, C ∈ Hl×n, D ∈ Hm×p, Q ∈ Hm1×k, and
P ∈ Hl×n1 be given. Then

r
[
A B

]
= r (B)− r (RBA) = r (A)− r (RAB) ,

r

[
A
C

]
= r (A)− r (CLA) = r (C)− r (ALC) ,

r

[
A BLQ

RPC 0

]
= r

 A B 0
C 0 P
0 Q 0

− r (P )− r (Q) .

Some important properties of η-Hermitian matrix are given in the following
lemma.

Lemma 1.2. [2] Let A ∈ Hm×n be given. Then

(Aη∗)+ =
(
A+

)η∗ ,
r (Aη∗) = r (A) ,(
A+A

)η∗
= Aη∗ (A+

)η∗ ,(
AA+

)η∗
=

(
A+

)η∗
Aη∗,

(LA)
η∗ = RAη∗,

(RA)
η∗ = LAη∗.

In order to establish the solvability conditions for the η-Hermitian solution to
system (1.3), we need the following results on η-Hermitian solution of the matrix
equation (1.2).

Lemma 1.3. [2] Let A1, B1 and C1 = Cη∗
1 be given. Set M = RA1B1 and

S = B1LM . Then the following statements are equivalent:
(1) Matrix equation (1.2) has a pair of η-Hermitian solutions X1 and Y1.
(2)

RMRA1C1 = 0, RA1C1 (RB1)
η∗ = 0.

(3)

r

[
A1 C1

0 Bη∗
1

]
= r (A1) + r (B1) , r

[
A1 B1 C1

]
= r

[
A1 B1

]
.
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In this case, the η-Hermitian solution to matrix equation (1.2) can be expressed
as

X1 =A+
1 C1

(
A+

1

)η∗ − 1

2
A+

1 B1M
+C1

[
I +

(
B+

1

)η∗
Sη∗] (A+

1

)η∗
− 1

2
A+

1

(
I + SB+

1

)
C1

(
M+

)η∗
Bη∗

1

(
A+

1

)η∗
− A+

1 SW2S
η∗ (A+

1

)η∗
+ LA1U + Uη∗ (LA1)

η ,

Y1 =
1

2
M+C1

(
B+

1

)η∗ [
I +

(
S+S

)η]
+

1

2

(
I + S+S

)
B+

1 C1

(
M+

)η∗
+ LMW2 (LM)η + V Lη

B1
+ LB1V

η∗

+ LMLSW1 +W η∗
1 (LS)

η (LM)η ,
where W1, U , V and W2 = W η∗

2 are arbitrary matrices over H with appropriate
sizes.

Lemma 1.4. Let A1 ∈ Hm×n and C1 = Cη∗
1 ∈ Hm×m be given. Then the

real quaternion matrix equation (1.1) has an η-Hermitian solution if and only
if A1A

+
1 C1 = C1, that is, r

[
A1 C1

]
= r (A1). In this case, the η-Hermitian

solution of can be expressed as
X = A+

1 C1

(
A+

1

)η∗
+ LA1U + Uη∗ (LA1)

η∗ ,
where U is an arbitrary matrix over H with appropriate size.

Khan, Wang, and Song [3] derived the minimal ranks of the following quater-
nion matrix expression:

f (U1,W1) = A1 −B1U1 − (B1U1)
(∗) − C1W1C

(∗)
1 , (1.5)

where A1 = A
(∗)
1 and W1 = W

(∗)
1 .

He and Wang [2] derived the minimal rank of the matrix expression
P (U1,W1) = A1 −B1U1 − (B1U1)

η∗ − C1W1C
η∗, (1.6)

by similar approach in [3].

Lemma 1.5. [2] Let P (U1,W1) be as given in (1.6) with A = Aη∗. Then

min
U,W=W η∗

r [P (U1,W1)] = 2r

[
A B C
Bη∗ 0 0

]
−r

 A B C
Bη∗ 0 0
Cη∗ 0 0

−2r (B) . (1.7)

Liu and Tian [6] derived the maximal and minimal ranks of the matrix ex-
pression A − BXC − (BXC)∗ over the complex field C. We can obtain the
maximal and minimal ranks of the matrix expression A−BXC − (BXC)η∗ over
the quaternion algebra.

Lemma 1.6. [6]Let A = Aη∗ ∈ Hm×m, B ∈ Hm×n, and C ∈ Hp×m be given. If
R (B) ⊆ R (Cη∗), then

max
X∈Hp×n

r [A−BXC − (BXC)η∗] = min

{
r
[
A Cη∗ ]

, r

[
A B
Bη∗ 0

]}
, (1.8)
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min
X∈Hp×n

r [A−BXC − (BXC)η∗] = 2r
[
A Cη∗ ]

+ r

[
A B
Bη∗ 0

]
− 2r

[
A B
C 0

]
.

(1.9)

2. The common η-Hermitian solution of the system of quaternion
matrix equations (1.3)

The goal of this section is to derive necessary and sufficient conditions for
the system of quaternion matrix equations (1.3) to have common η-Hermitian
solution. Now, we give the fundamental result of this section.

Theorem 2.1. Let Ai ∈ Hmi×n ,Bi ∈ Hmi×k, and Ci = Cη∗
i ∈ Hmi×mi (i = 1, 2)

be given, and assume that the pair of quaternion matrix equations in (1.3) has an
η-Hermitian solution. We put

Mi = RAi
Bi, Si = BiLMi

for (i = 1, 2).
Denote

D1 =

 0 0 0 Aη∗
1 Aη∗

2

A1 B1 0 C1 0
A2 0 B2 0 −C2

 ,

D2 =


Bη∗

1 Bη∗
2 0 0 0 0 0

C1 0 −B1 0 0 0 0
0 C2 B2 0 0 0 0
0 0 0 B1 0 A1 0
0 0 0 0 B2 0 A2

 ,

L1 =


0 0 0 Aη∗

1 −Aη∗
2

0 0 0 Bη∗
1 0

0 0 0 0 Bη∗
2

A1 B1 0 C1 0
A2 0 B2 0 C2

 ,

L2 =



0 0 0 0 Bη∗
2 0 0 0 0

0 0 0 Bη∗
1 0 0 Bη∗

2 0 0
0 0 −B1 C1 0 0 0 0 0
B2 0 0 0 C2 0 0 0 0
0 B1 0 0 0 0 0 A1 0
0 0 B2 0 0 Aη∗

1 0 0 A2

0 0 0 0 0 0 Aη∗
2 0 0


.

Then,

min
A1X1A

η∗
1 +B1Y1B

η∗
1 =C1

A2X2A
η∗
2 +B2Y2B

η∗
2 =C2

r (X1 −X2) = 2r (D1)− r (L1)− 2r

[
A1

A2

]
, (2.1)

min
A1X1A

η∗
1 +B1Y1B

η∗
1 =C1

A2X2A
η∗
2 +B2Y2B

η∗
2 =C2

r (Y1 − Y2) = 2r (D2)− r (L1)− 2r

[
B1

B2

]
. (2.2)
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Proof. It follows from Lemma 1.3 that the general η-Hermitian solution to quater-
nion matrix equation AiXiA

η∗
i +BiYiB

η∗
i = Ci (i = 1, 2) can be written as

X1 =A+
1 C1

(
A+

1

)η∗ − 1

2
A+

1 B1M
+
1 C1

[
I +

(
B+

1

)η∗
Sη∗
1

] (
A+

1

)η∗
− 1

2
A+

1

(
I + S1B

+
1

)
C1

(
M+

1

)η∗
Bη∗

1

(
A+

1

)η∗
− A+

1 S1W2S
η∗
1

(
A+

1

)η∗
+ LA1U1 + Uη∗

1 (LA1)
η

:=X01 − A+
1 S1W2S

η∗
1

(
A+

1

)η∗
+ LA1U1 + Uη∗

1 (LA1)
η ,

X2 =A+
2 C2

(
A+

2

)η∗ − 1

2
A+

2 B2M
+
2 C2

[
I +

(
B+

2

)η∗
Sη∗
2

] (
A+

2

)η∗
− 1

2
A+

2

(
I + S2B

+
2

)
C2

(
M+

2

)η∗
Bη∗

2

(
A+

2

)η∗
− A+

2 S2W
′
2S

η∗
2

(
A+

2

)η∗
+ LA2U2 + Uη∗

2 (LA2)
η

:=X02 − A+
2 S2W

′
2S

η∗
2

(
A+

2

)η∗
+ LA2U2 + Uη∗

2 (LA2)
η ,

Y1 =
1

2
M+

1 C1

(
B+

1

)η∗ [
I +

(
S+
1 S1

)η]
+

1

2

(
I + S+

1 S1

)
B+

1 C1

(
M+

1

)η∗
+ LM1W2 (LM1)

η + V1L
η
B1

+ LB1V
η∗
1

+ LM1LS1W1 +W η∗
1 (LS1)

η (LM1)
η

:=Y01 + LM1W2 (LM1)
η + V1L

η
B1

+ LB1V
η∗
1 + LM1LS1W1 +W η∗

1 (LS1)
η (LM1)

η ,

Y2 =
1

2
M+

2 C2

(
B+

2

)η∗ [
I +

(
S+
2 S2

)η]
+

1

2

(
I + S+

2 S2

)
B+

2 C2

(
M+

2

)η∗
+ LM2W

′
2 (LM2)

η + V2L
η
B2

+ LB2V
η∗
2

+ LM2LS2W
′
1 +W ′η∗

1 (LS2)
η (LM2)

η

:=Y02 + LM2W
′
2 (LM2)

η + V2L
η
B2

+ LB2V
η∗
2 + LM2LS2W

′
1 +W ′η∗

1 (LS2)
η (LM2)

η ,

where X0i and Y0i are special η-Hermitian solutions to AiXiA
η∗
i + BiYiB

η∗
i = Ci

for (i = 1, 2) and U1, V1, U2, V2, W1, W ′
1, W2 = W η∗

2 , and W ′
2 = W ′η∗

2 are
arbitrary matrices with appropriate sizes.
Thus, the differences X1 −X2 and Y1 − Y2 can be written as

X1 −X2 =X01 −X02 +
[
A+

1 S1 A+
2 S2

] [ −W2 0
0 W ′

2

] [
Sη∗
1

(
A+

1

)η∗
Sη∗
2

(
A+

2

)η∗ ]
+
[
LA1 LA2

] [ U1

−U2

]
+
[
Uη∗
1 −Uη∗

2

] [ (LA1)
η

(LA2)
η

]
=X01 −X02 +N1U + (N1U)η∗ + P1WP η∗

1 , (2.3)

Y1 − Y2 =Y01 − Y02 +
[
LM1 LM2

] [ W2 0
0 −W ′

2

] [
(LM1)

η

(LM2)
η

]
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+
[
V1 −V2 W η∗

1 −W ′η∗
1

] 
Lη
B1

Lη
B2

(LS1)
η (LM1)

η

(LS2)
η (LM2)

η



+
[
LB1 LB2 LM1LS1 LM2LS2

] 
V η∗
1

−V η∗
2

W1

−W ′
1


=Y01 − Y02 +N2U

′ + (N2U
′)
η∗
+ P2W

′P η∗
2 , (2.4)

where N1 =
[
LA1 LA2

]
, P1 =

[
A+

1 S1 A+
2 S2

]
,

N2 =
[
LB1 LB2 LM1LS1 LM2LS2

]
, and P2 =

[
LM1 LM2

]
.

Applying (1.7) to (2.3) and (2.4), we obtain

min
A1X1A

η∗
1 +B1Y1B

η∗
1 =C1

A2X2A
η∗
2 +B2Y2B

η∗
2 =C2

r (X1 −X2) =2r

[
X01 −X02 N1 P1

Nη∗
1 0 0

]

− r

 X01 −X02 N1 P1

Nη∗
1 0 0

P η∗
1 0 0

− 2r (N1) . (2.5)

min
A1X1A

η∗
1 +B1Y1B

η∗
1 =C1

A2X2A
η∗
2 +B2Y2B

η∗
2 =C2

r (Y1 − Y2) =2r

[
Y01 − Y02 N2 P2

Nη∗
2 0 0

]

− r

 Y01 − Y02 N2 P2

Nη
2 0 0

P η∗
2 0 0

− 2r (N2) . (2.6)

Applying Lemma 1.1, bloc Gaussian eliminations and simplifying by A1A
+
1 B1LM1 =

B1LM1 , RMη∗
1
Bη∗

1

(
A+

1

)η∗
Aη∗

1 = RMη∗
1
Bη∗

1 , and AiX0iA
η∗
i + BiY0iB

η∗
i = Ci for

(i = 1, 2), we obtain

r

[
X01 −X02 N1 P1

Nη∗
1 0 0

]

= r

 X01 −X02 LA1 LA2 A+
1 S1 A+

2 S2

(LA1)
η 0 0 0 0

(LA2)
η 0 0 0 0


= r

 X01 −X02 LA1 LA2 A+
1 S1 A+

2 S2

RAη∗
1

0 0 0 0
RAη∗

2
0 0 0 0



= r


X01 −X02 In In A+

1 S1 A+
2 S2 0 0

In 0 0 0 0 Aη∗
1 0

In 0 0 0 0 0 Aη∗
2

0 A1 0 0 0 0 0
0 0 A2 0 0 0 0


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− 2r (A1)− 2r (A2)

= r


0 In In 0 0 0 0
In 0 0 0 0 Aη∗

1 0
In 0 0 0 0 0 Aη∗

2

−A1X01 A1 0 −A1A
+
1 B1LM1 0 0 0

A2X02 0 A2 0 −A2A
+
2 B2LM2 0 0


− 2r (A1)− 2r (A2)

= r


0 In 0 0 0 0 0
In 0 0 0 0 0 0
0 0 0 0 0 −Aη∗

1 Aη∗
2

0 0 −A1 −B1LM1 0 A1X01A
η∗
1 0

0 0 A2 0 −B2LM2 0 −A2X02A
η∗
2


− 2r (A1)− 2r (A2)

= 2n+ r


0 0 0 −Aη∗

1 Aη∗
2

−A1 −B1 0 C1 0
A2 0 −B2 0 −C2

0 M1 0 0 0
0 0 M2 0 0


− 2r (A1)− 2r (A2)− r (M1)− r (M2)

= 2n+ r


0 0 0 −Aη∗

1 Aη∗
2 0 0

−A1 −B1 0 C1 0 0 0
A2 0 −B2 0 −C2 0 0
0 0 0 0 0 A1 0
0 0 0 0 0 0 A2


− 2r (A1)− 2r (A2)− r

[
B1 A1

]
− r

[
B2 A2

]
= 2n+ r

 0 0 0 Aη∗
1 Aη∗

2

A1 B1 0 C1 0
A2 0 B2 0 −C2

− r (A1)− r (A2)

− r
[
B1 A1

]
− r

[
B2 A2

]
= 2n+ r (D1)− r (A1)− r (A2)− r

[
B1 A1

]
− r

[
B2 A2

]
. (2.7)

r

 X01 −X02 N1 P1

Nη∗
1 0 0

P η∗
1 0 0



= r


X01 −X02 LA1 LA2 A+

1 S1 A+
2 S2

(LA1)
η 0 0 0 0

(LA2)
η 0 0 0 0

Sη∗
1

(
A+

1

)η∗
0 0 0 0

Sη∗
2

(
A+

2

)η∗
0 0 0 0


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= r


X01 −X02 LA1 LA2 A+

1 S1 A+
2 S2

RAη∗
1

0 0 0 0
RAη∗

2
0 0 0 0

Sη∗
1

(
A+

1

)η∗
0 0 0 0

Sη∗
2

(
A+

2

)η∗
0 0 0 0



= r



X01 −X02 In In A+
1 B1LM1 A+

2 B2LM2 0 0
In 0 0 0 0 Aη∗

1 0
In 0 0 0 0 0 Aη∗

2

RMη∗
1
Bη∗

1

(
A+

1

)η∗
0 0 0 0 0 0

RMη∗
2
Bη∗

2

(
A+

2

)η∗
0 0 0 0 0 0

0 A1 0 0 0 0 0
0 0 A2 0 0 0 0


− 2r (A1)− 2r (A2)

= r



0 In In 0 0 0 0
In 0 0 0 0 Aη∗

1 0
In 0 0 0 0 0 Aη∗

2

0 0 0 0 0 −RMη∗
1
Bη∗

1 0
0 0 0 0 0 0 −RMη∗

2
Bη∗

2

0 A1 0 −B1LM1 0 C1 0
0 0 A2 0 −B2LM2 0 −C2


− 2r (A1)− 2r (A2)

= r


0 0 0 −Aη∗

1 Aη∗
2

0 0 0 −RMη∗
1
Bη∗

1 0
0 0 0 0 −RMη∗

2
Bη∗

2

−A1 −B1LM1 0 A1X01A
η∗
1 0

A2 0 −B2LM2 0 −A2X02A
η∗
2


− 2r (A1)− 2r (A2) + 2n

= r



0 0 0 −Aη∗
1 Aη∗

2 0 0
0 0 0 −Bη∗

1 0 Mη∗
1 0

0 0 0 0 −Bη∗
2 0 Mη∗

2

−A1 −B1 0 C1 0 0 0
A2 0 −B2 0 −C2 0 0
0 M1 0 0 0 0 0
0 0 M2 0 0 0 0


− 2r (A1)− 2r (A2) + 2n− 2r (M1)− 2r (M2)
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= 2n+ r



0 0 0 −Aη∗
1 Aη∗

2 0 0 0 0
0 0 0 −Bη∗

1 0 Bη∗
1 0 0 0

0 0 0 0 −Bη∗
2 0 Bη∗

2 0 0
−A1 −B1 0 C1 0 0 0 0 0
A2 0 −B2 0 −C2 0 0 0 0
0 B1 0 0 0 0 0 A1 0
0 0 B2 0 0 0 0 0 A2

0 0 0 0 0 Aη∗
1 0 0 0

0 0 0 0 0 0 Aη∗
2 0 0


− 2r

[
B1 A1

]
− 2r

[
B2 A2

]
− 2r (A1)− 2r (A2)

= r


0 0 0 Aη∗

1 −Aη∗
2

0 0 0 Bη∗
1 0

0 0 0 0 Bη∗
2

A1 B1 0 C1 0
A2 0 B2 0 C2

+ 2n− 2r
[
B1 A1

]
− 2r

[
B2 A2

]

= 2n+ r (L1)− 2r
[
B1 A1

]
− 2r

[
B2 A2

]
. (2.8)

r

[
Y01 − Y02 N2 P2

Nη∗
2 0 0

]

= r


Y01 − Y02 LB1 LB2 LM1LS1 LM2LS2 LM1 LM2

Lη
B1

0 0 0 0 0 0
Lη
B2

0 0 0 0 0 0
(LS1)

η (LM1)
η 0 0 0 0 0 0

(LS2)
η (LM2)

η 0 0 0 0 0 0



= r


Y01 − Y02 LB1 LB2 LM1 LM2

RBη∗
1

0 0 0 0
RBη∗

2
0 0 0 0

RSη∗
1
(LM1)

η 0 0 0 0
RSη∗

2
(LM2)

η 0 0 0 0



= r



Y01 − Y02 Ik Ik Ik Ik 0 0 0 0
Ik 0 0 0 0 Bη∗

1 0 0 0
Ik 0 0 0 0 0 Bη∗

2 0 0
(LM1)

η 0 0 0 0 0 0 Sη∗
1 0

(LM2)
η 0 0 0 0 0 0 0 Sη∗

2

0 B1 0 0 0 0 0 0 0
0 0 B2 0 0 0 0 0 0
0 0 0 M1 0 0 0 0 0
0 0 0 0 M2 0 0 0 0


− 2r (B1)− 2r (B2)− r (S1)− r (S2)− r (M1)− r (M2)
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= r



0 Ik Ik Ik Ik 0 0 0 0
Ik 0 0 0 0 Bη∗

1 0 0 0
Ik 0 0 0 0 0 Bη∗

2 0 0
0 0 0 0 0 − (LM1)

η Bη∗
1 0 Sη∗

1 0
0 0 0 0 0 0 − (LM2)

η Bη∗
2 0 Sη∗

2

−B1Y01 B1 0 0 0 0 0 0 0
B2Y02 0 B2 0 0 0 0 0 0
0 0 0 M1 0 0 0 0 0
0 0 0 0 M2 0 0 0 0


− 2r (B1)− 2r (B2)− r (S1)− r (S2)− r

[
A1 B1

]
+ r (A1)− r

[
A2 B2

]
+ r (A2)

= r



0 Ik 0 0 0 0 0 0 0
Ik 0 0 0 0 0 0 0 0
0 0 0 0 0 −Bη∗

1 Bη∗
2 0 0

0 0 0 0 0 0 0 Sη∗
1 0

0 0 0 0 0 0 0 0 Sη∗
2

0 0 −B1 −B1 −B1 C1 0 0 0
0 0 B2 0 0 0 −C2 0 0
0 0 0 RA1B1 0 0 0 0 0
0 0 0 0 RA2B2 0 0 0 0


− 2r (B1)− 2r (B2)− r (S1)− r (S2)− r

[
A1 B1

]
+ r (A1)− r

[
A2 B2

]
+ r (A2)

= 2k + r


0 0 0 −Bη∗

1 Bη∗
2

−B1 −B1 −B1 C1 0
B2 0 0 0 −C2

0 RA1B1 0 0 0
0 0 RA2B2 0 0


− 2r (B1)− 2r (B2)− r

[
A1 B1

]
+ r (A1)− r

[
A2 B2

]
+ r (A2)

= 2k + r


0 0 0 −Bη∗

1 Bη∗
2 0 0

−B1 −B1 −B1 C1 0 0 0
B2 0 0 0 −C2 0 0
0 B1 0 0 0 A1 0
0 0 B2 0 0 0 A2


− 2r (B1)− 2r (B2)− r

[
A1 B1

]
− r

[
A2 B2

]

= 2k + r


Bη∗

1 Bη∗
2 0 0 0 0 0

C1 0 −B1 0 0 0 0
0 C2 B2 0 0 0 0
0 0 0 B1 0 A1 0
0 0 0 0 B2 0 A2


− 2r (B1)− 2r (B2)− r

[
A1 B1

]
− r

[
A2 B2

]
= 2k + r (D2)− 2r (B1)− 2r (B2)− r

[
A1 B1

]
− r

[
A2 B2

]
. (2.9)
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r

 Y01 − Y02 N2 P2

Nη
2 0 0

P η∗
2 0 0



= r



Y01 − Y02 LB1 LB2 LM1LS1 LM2LS2 LM1 LM2

Lη
B1

0 0 0 0 0 0
Lη
B2

0 0 0 0 0 0
(LS1)

η (LM1)
η 0 0 0 0 0 0

(LS2)
η (LM2)

η 0 0 0 0 0 0
(LM1)

η 0 0 0 0 0 0
(LM2)

η 0 0 0 0 0 0



= r


Y01 − Y02 LB1 LB2 LM1 LM2

RBη∗
1

0 0 0 0
RBη∗

2
0 0 0 0

RMη∗
1

0 0 0 0
RMη∗

2
0 0 0 0



= r



Y01 − Y02 Ik Ik Ik IK 0 0 0 0
Ik 0 0 0 0 Bη∗

1 0 0 0
Ik 0 0 0 0 0 Bη∗

2 0 0
Ik 0 0 0 0 0 0 Mη∗

1 0
Ik 0 0 0 0 0 0 0 Mη∗

2

0 B1 0 0 0 0 0 0 0
0 0 B2 0 0 0 0 0 0
0 0 0 M1 0 0 0 0 0
0 0 0 0 M2 0 0 0 0


− 2r (B1)− 2r (B2)− 2r (M1)− 2r (M2)

= r



0 Ik 0 0 0 0 0 0 0
Ik 0 0 0 0 Bη∗

1 0 0 0
Ik 0 0 0 0 0 Bη∗

2 0 0
Ik 0 0 0 0 0 0 Mη∗

1 0
Ik 0 0 0 0 0 0 0 Mη∗

2

−B1Y01 B1 −B1 −B1 −B1 0 0 0 0
B2Y02 0 B2 0 0 0 0 0 0
0 0 0 M1 0 0 0 0 0
0 0 0 0 M2 0 0 0 0


− 2r (B1)− 2r (B2)− 2r (M1)− 2r (M2)

= r



0 0 0 −Bη∗
1 Bη∗

2 0 0
0 0 0 −Bη∗

1 0 Bη∗
1 LAη∗

1
0

0 0 0 −Bη∗
1 0 0 Bη∗

2 LAη∗
2

−B1 −B1 −B1 C1 0 0 0
B2 0 0 0 −C2 0 0
0 RA1B1 0 0 0 0 0
0 0 RA2B2 0 0 0 0


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2k − 2r (B1)− 2r (B2)− 2r (M1)− 2r (M2)

= r



0 0 0 −Bη∗
1 Bη∗

2 0 0 0 0
0 0 0 −Bη∗

1 0 Bη∗
1 0 0 0

0 0 0 −Bη∗
1 0 0 Bη∗

2 0 0
−B1 −B1 −B1 C1 0 0 0 0 0
B2 0 0 0 −C2 0 0 0 0
0 B1 0 0 0 0 0 A1 0
0 0 B2 0 0 0 0 0 A2

0 0 0 0 0 Aη∗
1 0 0 0

0 0 0 0 0 0 Aη∗
2 0 0


− 2r (B1)− 2r (B2)− 2r (M1)− 2r (M2)− 2r (A1)− 2r (A2)

= r



0 Ik 0 0 0 0 0 0 0
Ik 0 0 0 0 0 0 0 0
0 0 0 0 0 −Bη∗

1 Bη∗
2 0 0

0 0 0 0 0 −Bη∗
1 0 Mη∗

1 0
0 0 0 0 0 −Bη∗

1 0 0 Mη∗
2

0 0 −B1 −B1 −B1 B1Y01B
η∗
1 0 0 0

0 0 B2 0 0 0 −B2Y02B
η∗
2 0 0

0 0 0 M1 0 0 0 0 0
0 0 0 0 M2 0 0 0 0


− 2r (B1)− 2r (B2)− 2r (M1)− 2r (M2)

= 2k + r



0 0 0 0 Bη∗
2 0 0 0 0

0 0 0 Bη∗
1 0 0 Bη∗

2 0 0
0 0 −B1 C1 0 0 0 0 0
B2 0 0 0 C2 0 0 0 0
0 B1 0 0 0 0 0 A1 0
0 0 B2 0 0 Aη∗

1 0 0 A2

0 0 0 0 0 0 Aη∗
2 0 0


− 2r (B1)− 2r (B2)− 2r

[
A1 B1

]
− 2r

[
A2 B2

]
= 2k + r (L2)− 2r (B1)− 2r (B2)− 2r

[
A1 B1

]
− 2r

[
A2 B2

]
. (2.10)

r (N1) = r
[
LA1 LA2

]
= r

 In In
A1 0
0 A2

− r (A1)− r (A2)

= r

[
A1

A2

]
− r (A1)− r (A2) + n. (2.11)

r (N2) = r
[
LB1 LB2 LM1LS1 LM2LS2

]
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= r


Ik Ik LM1 LM2

B1 0 0 0
0 B2 0 0
0 0 S1 0
0 0 0 S2

− r (B1)− r (B2)− r (S1)− r (S2)

= r


Ik Ik 0 0
B1 0 0 0
0 B2 0 0
0 0 S1 0
0 0 0 S2

− r (B1)− r (B2)− r (S1)− r (S2)

= r

[
B1

B2

]
− r (B1)− r (B2) + k. (2.12)

Substituting (2.7), (2.8), (2.11) and (2.9), (2.10), (2.12) into (2.5) and (2.6),
respectively, we get (2.1) and (2.2). □

Corollary 2.2. Let Ai ∈ Hmi×n, Bi ∈ Hmi×k, and Ci = Cη∗
i ∈ Hmi×mi (i = 1, 2)

be given, and let D1, D2, L1, and L2 be as given in Theorem 2.1. Assume that the
pair of quaternion matrix equations in (1.3) has an η-Hermitian solution. Then
the following properties hold:
a) The system of quaternion matrix equations (1.3) has a common η-Hermitian
solution for X if and only if

2r (D1) = r (L1) + 2r

[
A1

A2

]
.

b) The system of quaternion matrix equations (1.3) has a common η-Hermitian
solution for Y if and only if

2r (D2) = r (L2) + 2r

[
B1

B2

]
.

By vanishing some matrices in (1.3), we obtain necessary and sufficient condi-
tions of the system (1.4) to have common η-Hermitian solution.

Corollary 2.3. Let Ai ∈ Hmi×n and Ci = Cη∗
i ∈ Hmi×mi (i = 1, 2) be given.

Assume that both of matrix equations in (1.4) is consistent. Then, the system
(1.4) has a common η-Hermitian solution if and only if

r

 0 Aη∗
1 Aη∗

2

A1 C1 0
A2 0 −C2

 = 2r

[
A1

A2

]
.

3. Extremal ranks of the matrix expression C2 − A2XAη∗
2 with

respect to η-Hermitian solution to (1.1)

In this section, we derive the extremal ranks of the η-Hermitian matrix expres-
sion

f (X) = C2 − A2X1A
η∗
2 (3.1)
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subject to η-Hermitian solution of quaternion matrix equation (1.1), where Ai ∈
Hmi×n and Ci = Cη∗

i ∈ Hmi×mi for (i = 1, 2).

Theorem 3.1. Let f (X) be as given in (3.1). The extermal ranks of the quater-
nion matrix expression f (X) subject to the consistent equation (1.1) are as follows:

max
A1X1A

η∗
1 =C1

r (f (X)) = min

r
[
C2 A2

]
, r

 C2 A2 0
Aη∗

2 0 Aη∗
1

0 A1 −C1

− 2r (A1)

 ,

(3.2)

min
A1X1A

η∗
1 =C1

r (f (X)) = 2r
[
C2 A2

]
+ r

 C2 A2 0
Aη∗

2 0 Aη∗
1

0 A1 −C1

− 2r

 C2 A2

Aη∗
2 0
0 A1

 .

(3.3)

Proof. By Lemma 1.4, the quaternion matrix equation (1.1) has an η-Hermitian
solution if and only if A1A

+
1 C1 = C1. In this case, the η-Hermitian solution can

be expressed as
X1 = A+

1 C1

(
A+

1

)η∗
+ LA1U + Uη∗ (LA1)

η∗ , (3.4)
where U is an arbitrary matrix over H with appropriate size.
Substituting (3.4) into (3.1) yields

f (X) = C2 − A2A
+
1 C1

(
A+

1

)η∗
Aη∗

2 − A2LA1UAη∗
2 − (A2LA1UAη∗

2 )
η∗

= G− SUAη∗
2 − (SUAη∗

2 )
η∗ ,

where G = C2 − A2A
+
1 C1

(
A+

1

)η∗
Aη∗

2 , S = A2LA1 .
It follows from Lemma 1.6 that

max
A1X1A

η∗
1 =C1

r f (X) = max
U

r
[
G− SUAη∗

2 − (SUAη∗
2 )

η∗]
= min

{
r
[
G A2

]
, r

[
G S
Sη∗ 0

]}
, (3.5)

min
A1X1A

η∗
1 =C1

r f (X) = min
U

r

[
C2 − A2A

+
1 C1

(
A+

1

)η∗
Aη∗

2 − A2LA1UAη∗
2

− (A2LA1UAη∗
2 )

η∗

]
= 2r

[
G A2

]
+ r

[
G S
Sη∗ 0

]
− 2r

[
G S
Aη∗

2 0

]
. (3.6)

Applying Lemma 1.1, block Gaussian eliminations and simplifying by A1A
+
1 C1 =

C1, we obtain
r
[
G A2

]
= r

[
C2 − A2A

+
1 C1

(
A+

1

)η∗
Aη∗

2 A2

]
= r

[
C2 A2

]
(3.7)

r

[
C2 − A2A

+
1 C1

(
A+

1

)η∗
Aη∗

2 A2LA1

Aη∗
2 0

]
= r

 C2 A2

Aη∗
2 0
0 A1

− r (A1) . (3.8)

r

[
C2 − A2A

+
1 C1

(
A+

1

)η∗
Aη∗

2 A2LA1

(A2LA1)
η∗ 0

]
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= r

[
C2 − A2A

+
1 C1

(
A+

1

)η∗
Aη∗

2 A2LA1

RAη∗
1
Aη∗

2 0

]

= r

 C2 − A2A
+
1 C1

(
A+

1

)η∗
Aη∗

2 A2 0
Aη∗

2 0 Aη∗
1

0 A1 0

− 2r (A1)

= r

 C2 A2 0
Aη∗

2 0 Aη∗
1

0 A1 −C1

− 2r (A1) . (3.9)

Substituting (3.7)–(3.9) into (3.5) and (3.6) yields the desired results in (3.2) and
(3.3). □

In the previous theorem, if the quaternion matrix equation A2X2A
η∗
2 = C2 is

consistent, that is, A2A
+
2 C2 = C2, then we have the following results.

Corollary 3.2. Assume that both quaternion matrix equations A1X1A
η∗
1 = C1

and A2X2A
η∗
2 = C2 are consistent. Then

max
A1X1A

η∗
1 =C1

r (C2 − A2X1A
η∗
2 ) = min

r (A2) , r

 C2 A2 0
Aη∗

2 0 Aη∗
1

0 A1 −C1

− 2r (A1)

 ,

(3.10)

min
A1X1A

η∗
1 =C1

r (C2 − A2X1A
η∗
2 ) = r

 C2 A2 0
Aη∗

2 0 Aη∗
1

0 A1 −C1

− 2r

[
A2

A1

]
. (3.11)

Corollary 3.3. Let the rank equality in (3.11) equal zero. Then we obtain the
same result of Corollary 2.3.

As is well known, for a given block matrix

M =

[
A B
Bη∗ D

]
,

where A and D are η-Hermitian quaternion matrices with appropriate sizes, the
Hermitian Schur complement of A in M is defined as

SA = D −Bη∗A−B, (3.12)
where A− is an η-Hermitian generalized inverse of A, that is,

A− ∈ {X | AXA = A, X = Xη∗} .
Now, we use Theorem 3.1 to establish the extremal ranks of SA given by (3.12)

with respect to A−
1 , which is an η-Hermitian solution to the quaternion matrix

equation (1.1).
Theorem 3.4. Let A1 = Aη∗

1 , C1 = Cη∗
1 ∈ Hn×n, B ∈ Hn×m, and D = Dη∗ ∈

Hm×m be given. Assume that quaternion matrix equation in (1.1) is consistent.
Then

max
A1A

−
1 Aη∗

1 =C1

r (SA) = min

{
r
[
D Bη∗ ]

, r

[
D Bη∗

B A1

]
− r (A1)

}
, (3.13)
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min
A1A

−
1 Aη∗

1 =C1

r (SA) = 2r
[
D Bη∗ ]

+ r

[
D Bη∗

B A1

]
− 2r

 D Bη∗

B 0
0 A1

+ r (A1) .

(3.14)

Proof. It is obvious that
max

A1A
−
1 Aη∗

1 =C1

r
(
D −Bη∗A−

1 B
)
= max

A1XAη∗
1 =C1

A1XA1=A1

r (D −Bη∗XB) ,

min
A1A

−
1 Aη∗

1 =C1

r
(
D −Bη∗A−

1 B
)
= min

A1XAη∗
1 =C1

A1XA1=A1

r (D −Bη∗XB) .

Thus, in Theorem 3.1, we set A2 = Bη∗, C2 = D and A1 = Aη∗
1 = C1. Therefore,

we get

max
A1A

−
1 Aη∗

1 =C1

r
(
D −Bη∗A−

1 B
)
= min

 r
[
D Bη∗ ]

, r

 D Bη∗ 0
B 0 A1

0 A1 −A1


−2r (A1)

 ,

(3.15)

min
A1A

−
1 Aη∗

1 =C1

r
(
D −Bη∗A−

1 B
)
= 2r

[
D Bη∗ ]

+ r

 D Bη∗ 0
B 0 A1

0 A1 −A1


− 2r

 D Bη∗

B 0
0 A1

 . (3.16)

Simplifying by Gaussian elimination, we have

r

 D Bη∗ 0
B 0 A1

0 A1 −A1

 = r

 D Bη∗ 0
B A1 0
0 0 −A1

 = r

[
D Bη∗

B A1

]
+ r (A1) . (3.17)

Substituting (3.17) into (3.15) and (3.16), the proof is finished. □
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