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RATIONAL HOMOTOPY OF A MAP OF PROJECTIVE
QUATERNIONS AND THEIR RELATIVE GOTTLIEB GROUPS
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Abstract. In this paper, we show in terms of Sullivan models that the ra-
tional homotopy of a map ι : HPm ↪→ HPm+r between projective quaternion
spaces is a product of a quaternion projective space and odd spheres. We also
study the properties of a map aut1 HPm → maps(HPm,HPm+r; ι) and its
G-sequence.

1. Introduction

Let h : M → N be a based map, where M and N are simply connected finite
CW-complexes. As in [13], define by ω : maps(M,N ;h) → N the evaluation
map, where maps(M,N ;h) is the component of h in the space of mappings from
M to N, and by

ω♯ : π∗maps(M,N ;h) → π∗(N)

the image of the homomorphism induced in homotopy groups called the mth
evaluation subgroup of h, and it is denoted by Gm(N,M ;h). In particular, if
h = idM , then the space maps(M,N ;h) is the monoid aut1(M) of self-equivalences
of M homotopic to the identity of M, such that ev : aut1(M) → M is the
evaluation map, and

ev♯ : π∗(aut1(M)) → π∗(M)

is the image of the induced homomorphism called the mth Gottlieb group, de-
noted by Gm(M) [9].

Furthermore, as it is known that a topological pair gives rise to a natural long
exact sequence of homotopy groups, which plays an important role in relating
homotopy groups of different topological spaces, but what about the subgroups
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of homotopy groups, that is, Gottlieb groups, generalized evaluation subgroups
and relative evaluation subgroups? Thus, Woo and Lee [23] studied the properties
of relative evaluation subgroups of a pair Grel

m (M,N ;h) and proved that they fit
in a sequence

· · · → Grel
m+1(M,N ;h) → Gm(M) → Gm(M,N ;h) → · · ·

called the G-sequence of h. This sequence is exact in some cases, for instance,
if h is a homotopy monomorphism. Therefore, the exactness of the G-sequence
relates subgroups of homotopy groups.

An important problem is then to describe the homotopy type of the map-
ping space maps(M,N ;h) in terms of the homotopy types of M and N. In
[10, 18], the authors described the rational homotopy classification problem for
the components of some mapping spaces maps(M,N ;h). In particular, Møller
and Raussen [18] gave a different proof of our main result Theorem 1.1. On the
other hand, most recently, in [13], the authors interpreted the homomorphism
π∗maps(M,N ;h) → π∗(N) in terms of a map of chain complexes of derivations
constructed directly from the Sullivan minimal model of h. As a result, follow-
ing [13], the authors in [19, 14, 15, 7, 16, 24] used a map of chain complexes
of derivations of minimal Sullivan models of mapping spaces to compute ratio-
nal relative Gottlieb groups of some complex (resp., quaternion) Grassmannians.
It is also known that these chain complexes are L∞ models of mapping spaces
(see [1, 2]). However, there are few explicit computations and descriptions known
about rational Gottlieb groups of mapping spaces and their resulting G-sequence.

Thus, following [13, 2], the authors [8] studied the rational homotopy of func-
tion spaces between complex Grassmannians, whereas in [6], the main result
provided another proof of the result in [18, Example 3.4] using the L∞ model of
a map ι : CPm ↪→ CPm+r.

In this note, our main result gives another proof of a result in [18, Example 3.4]
using L∞ models of mapping spaces. In the process, we also describe the asso-
ciated G-sequence and the rational Gottlieb group of F0-spaces that are rational
two stage spaces. Hence, our main result reads as follows.
Theorem 1.1. The mapping space maps(HPm,HPm+r; ι) has the rational ho-
motopy type of HP r × S4r+7 × · · · × S4(m+r)+3.

Considering the evaluation subgroups of the mapping aut1HPm → HPm+r, we
have the following result.
Theorem 1.2. The G-sequence of a map

aut1HPm → maps(HPm,HPm+r; ι)

is not exact.

2. Preliminaries

Throughout this paper, our study is based on minimal Sullivan models in ra-
tional homotopy theory for which [3] is the main reference. All vector spaces and
algebras are taken over a field of rational numbers Q. We begin by reminding
some standard definitions.
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Definition 2.1. A commutative graded differential algebra (cdga) is a graded
algebra (C, d) such that ab = (−1)|a||b|ba and d(ab) = (da)b+ (−1)|pq|a(db) for all
a ∈ Cp, b ∈ Cq. It is connected if H0(C) ∼= Q. If W = ⊕i≥1W

i with W even :=
⊕i≥1W

2i and W odd := ⊕i≥1W
2i−1, then ∧W denotes the free commutative graded

algebra defined by the tensor product
∧W = S(W even)⊗ E(W odd),

where S(W even) is the symmetric algebra on W even and E(W odd) is the exterior
algebra on W odd.

Definition 2.2. A commutative differential graded algebra (∧W,d) is a Sullivan
algebra whenever W = ∪k≥0W (k) and W (0) ⊂ W (1) · · · such that dW (0) = 0
and dW (k) ⊂ ∧W (k − 1). It is called minimal if dW ⊂ ∧≥2W.

If M is a simply connected space, then there is a cdga APL(M) of rational poly-
nomial differential forms on M that uniquely determines the rational homotopy
type of M [22, 3].

Let (C, d) be a cdga. A derivation θ of degree r is a linear mapping θ : Cm →
Cm−r such that θ(xy) = θ(x)y+(−1)r|x|xθ(y). Denote by Derr C the vector space
of all derivations of degree r, and DerC = ⊕r Derk C. The differential δ is defined
in the usual way by ∂θ = d ◦ θ + (−1)r+1θ ◦ d. Let (∧V, d) be a Sullivan algebra,
where V is spanned by {v1 . . . , vk}. Then, Der∧V is spanned by θ1, . . . , θk, where
θi is the unique derivation of ∧V defined by θi(vj) = δij. The derivation θi will be
denoted by (vi, 1). Moreover, an element v ∈ V ∼= π∗(X)⊗Q is a Gottlieb element
of π∗(X)⊗Q if and only if there is a derivation θ of ∧V satisfying θ(v) = 1 and
such that δθ = 0 [3, p. 392].

Let f : (C, d) → (E, d) be a morphism of cdgas. An f -derivation of degree r is
a linear mapping θ : Cm → Em−r for which θ(xy) = θ(x)f(y) + (−1)r|x|f(x)θ(y).
Denote by Der(C,E; f) = ⊕m Derm(C,E; f) the graded vector space of all f -
derivations. The differential graded vector space of all positive f -derivations
is denoted by (Der(C,E; f), ∂), and the differential ∂ is defined by δθ = dE ◦
θ + (−1)k+1θ ◦ dC , where in degree one, we restrict to the subspace of cycles in
Der1(C,E; f).

It was shown in [13] that a pre-composition with f gives a chain complex map
f ∗ : Der(E,E; 1) → Der(C,E; f) and that a post-composition with the augmen-
tation ε : E → Q gives a chain complex map ε∗ : Der(C,E; f) → Der(C,Q; ε).
The evaluation subgroup of f is defined as follows:

Gm(C,E; f) = Im{H(ε∗) : Hm(Der(C,E; f)) → Hm(Der(C,Q; ε))}.
In the case when C = E and f = 1E, we get the Gottlieb group of (E, d) defined
as

Gm(E) = Im{H(ε∗) : Hm(Der(E,E; 1)) → Hm(Der(E,Q; ε))}.
In particular, Gm(E) ∼= Gm(MQ) if E is the minimal Sullivan model of a simply
connected space M [3, Proposition 29.8].
Definition 2.3. A simply connected space M is called formal (see [4]) if there is a
quasi-isomorphism (∧W,d) → H∗(∧W,d), where (∧W,d) is the minimal Sullivan
model of M.
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Examples of formal spaces include spheres, quaternion projective spaces, ho-
mogeneous spaces G/H, where G and H have equal rank, and compact Kähler
manifolds. Moreover, a product of formal spaces is also formal.

Definition 2.4. A finite simply connected CW-complex M of which the rational
homotopy group π∗(M)⊗Q is finite dimensional and the rational cohomology is
evenly graded is called an F0-space (see [20]).

Examples of F0-spaces include finite products of even dimensional spheres,
finite products of complex (resp., quaternion) projective spaces, homogeneous
spaces G/H, where H is a closed subgroup of maximal rank of a compact con-
nected Lie group G.

In [11, 20], the minimal Sullivan model of an F0-space M is of the form
(∧V, d) = (∧(V0 ⊕ V1), d), where V is finite dimensional and dV0 = 0, dV1 ⊆ ∧V0.
Denote by < v1, v2, . . . , vn > the vector space generated by a finite basis {vi} of
V. Write V even

0 = Q < x1, . . . , xn >= P and V odd
1 = Q < y1, . . . , yn >= W, so

that (∧(V0 ⊕ V1), d)
∼=→ (∧(P ⊕ W ), d) and dP = 0, dW ⊆ ∧P. The associated

minimal Sullivan model for an F0-space M is a two-stage model. Moreover,

H∗(∧V, d) = ∧(x1, . . . , xn)

(α1, . . . , αn)
,

where (α1, . . . , αn) is a regular sequence in ∧P. Hence, M admits a minimal
Sullivan model of the form (∧V, d) = (∧(P ⊕W ), d), where dP = 0 and dyn = αn.
Thus, F0-spaces are formal.

3. L∞-models of mapping spaces

Here we recall some standard definitions on L∞ algebras were introduced by
Lada and Markl [12] and L∞ models of function spaces studied by Buijs, Félix,
and Murillo [1, 2].

Definition 3.1. A permutation σ ∈ Sr is an (m, k −m) shuffle if σ(1) < · · · <
σ(m) and σ(m + 1) < · · · < σ(r), where m = 1, . . . , i. The Koszul sign ε(σ) is
determined by

y1 ∧ · · · ∧ yk = ε(σ)yσ(1) ∧ · · · ∧ yσ(k),

where the subscripts indicate the degrees of the graded objects y1, . . . , yr.

Definition 3.2. [1] An L∞ algebra is a graded vector space L = ⊕iLi equipped
with a family of linear maps

`r := [, . . . , ] : L⊗r → L

of degree r − 2 for r ≥ 1 called brackets such that
(1) `k are skew-symmetric, that is,

[yσ(1), . . . , yσ(r)] = sgn(σ)ε(σ)[yσ(1), . . . , yσ(r)],

where sgn(σ) is the sign of σ.
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(2) The generalized Jacobi identities are given by∑
m+j=r+1

∑
σ

sgn(σ)ε(σ)(−1)m(j−1)`j(`m(xσ(1), . . . , yσ(m)), xσ(m+1), . . . , yσ(r)) = 0,

where σ ∈ S(m, r −m).

We follow [2] for this definition. Thus D̃er(C,E; f) is defined as follows:

D̃eri(C,E; f) =

{
Deri(C,E; f), i > 1,

{α ∈ Der1(C,E; f) : ∂α = 0}, i = 1.

Let (C, d) = (∧W,d) be a Sullivan algebra and let α1, . . . , αr ∈ D̃er(∧W,E; f) be
f -derivations of respective degrees m1, . . . ,mr. We define their bracket [α1, . . . , αr] ∈
D̃er(∧W,E; f) of length r by

[α1, . . . , αr](w) = (−1)η
∑ ∑

i1,...,ir

εf(w1 . . . ŵi1 . . . ŵir . . . wj)α1(wi1) . . . αr(wir),

where dw =
∑

w1 . . . wr, η = m1 + · · ·+mr−1 and ε is the suitable sign given by
the Koszul convention. The desuspension defines linear maps `r for r ≥ 1 each
of degree r − 2 on s−1D̃er(∧W,E; f) by

`1(s
−1α) = −s−1∂′α, `r(s

−1α1, . . . , s
−1αr) = (−1)βs−1[α1, . . . , αr],

where β = r2−r
2

+
∑r−1

i=1 (r−i)|αi| [2]. It was shown in [2] that (s−1Der(∧W,E; f), `r)
is an L∞ model of maps(M,N ;h).

4. Preliminary results

Consider a map ι : HPm ↪→ HPm+r. In [17], the minimal Sullivan model
of HPm is given by (∧(x4, x4m+3), d) where dx4 = 0, dx4m+3 = xm+1

4 , and the
minimal Sullivan model of HPm+r is given by (∧(y4, y4(m+r)+3), d) with dy4 =
0, dy4(m+r)+3 = ym+r+1

4 . Moreover, the map HPm ↪→ HPm+k is modeled by

f : ∧y4/(ym+r+1
4 ) → ∧x4/(x

m+1
4 ),

where f(y4) = x4. We have the following results.

Theorem 4.1. Let E = (∧(x4, x4m+3), d). Then Gm(E) = ⟨[x∗
4m+3]⟩.

Proof. Consider Der(E,E; 1) = ⊕m
i=0Qα4i+3 ⊕ Qα4, where α4 is the derivation

taking x4 to one and α4i+3 is the derivation taking x4m+3 to xm−i
4 for i = 0, . . . ,m.

Then δα4i+3 = 0 and δα4 = (m+1)α3. Hence, for 1 ≤ i ≤ m, [α4i+3] is nonzero in
H∗(Der(E,E; 1)). Moreover, ε∗(α4i+3) = x∗

4i+3. As HPm is a finite CW-complex,
then Geven(E) = 0 (see [3, p. 379]). Hence, Gm(E) = ⟨[x∗

4i+3]⟩. □

Lemma 4.2. Let f : C = (∧(y4, y4(m+r)+3), d) → ∧x4/(x
m+1
4 ) = E, where

f(y4) = x4 and f(y4(m+r)+3) = 0 be given. Then, an f -derivation θ4 is a cy-
cle.
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Proof. As θ4(y4) = 1, then ∂(θ4)(y4) = 0. Now it only remains to define θ4 on
y4(m+r)+3 such that

dθ4(y4(m+r)+3)− θ4(dy4(m+r)+3) = 0.

Hence,
dθ4(y4(m+r)+3)− θ4(dy4(m+r)+3) = dθ4(y4(m+r)+3)− θ4(y

m+r+1
4 )

dθ4(y4(m+r)+3)− (m+ r + 1)ym+r
4 .

As the dimension of HPm is 4m and 4m is less than 4(m + r) for r ≥ 1, then
(m+r+1)ym+r

4 is boundary, that is, (m+r+1)ym+r
4 = dt. Define θ4(y4(m+r)+3) = t.

Moreover, ∂θ4 = 0. Therefore, θ4 is nonzero in H∗(Der(C,E; f), ∂). □
Theorem 4.3. Let f : C → E be a Sullivan model of a map HPm ↪→ HPm+r.
Then, G∗(C,E; f) = ⟨[y∗4], [y∗4(m+r)+3]⟩.

Proof. Define the derivation θ4(m+r)+3 = (y4(m+r)+3, 1) in Der(C,E; f). Then
∂θ4(m+r)+3 = 0. Moreover, [θ4(m+r)+3] is nonzero in H∗(Der(C,E; f), ∂), and [θ4]
is nonzero in H∗(Der(C,E; f), ∂) by Lemma 4.2. Furthermore, H(ε∗)([θ4]) =
[y∗4] and H(ε∗)([θ4(m+r)+3]) = [y∗4(m+r)+3]. It then follows that G∗(C,E; f) =

⟨[y∗4], [y∗4(m+r)+3]⟩. □

We note that for r = 0, it is easily verified that the model of aut1HPm =
maps(HPm,HPm, 1) has the rational homotopy type of the product S7 × S11 ×
· · · × S4n+3 (see Theorem 4.1). From now on, we assume r ≥ 1, and we establish
the following results (see [18] for another different proof).

Theorem 4.4. The mapping space maps(HPm,HPm+r, ι) is modeled by
(∧(z4, z4r+3, . . . , z4(m+r)+3), d),

where dz4 = 0 and dz4r+3 = zr+1
4 , . . . , dz4(m+r)+3 = zm+r+1

4 .

Proof. Consider the map
f : C = (∧(y4, y4(m+r)+3), d) → ∧x4/(x

m+1
4 ) = D.

Then by Theorem 4.3, a vector space D̃er(C,E; f) is spanned by
{β4, β4r+4i−1, i = 1, . . . ,m + 1}, where β4r+4i−1 = (y4(m+r)+3, y

m−i+1
4 ) and β4 =

(y4, 1). Thus, an L∞ model (L, `r) of maps(HPm,HPm+r, ι) is spanned by
⟨s−1β4, s

−1β4r+4i−1, i = 1, . . . ,m + 1⟩. A straightforward calculation shows that
the only nonzero brackets are as follows: [β4, . . . , β4] = β4r+4i−1, i = 1, . . . ,m+1.
Hence, `j = 0 for j = 1, . . . r and `r+i(s

−1β4, . . . , s
−1β4) = β4r+4i−1.

Therefore,
C∞(L) = ∧(z4, z4r+3, z4r+7, . . . , z4(m+r)+3), d),

where dz4 = 0, dz4(r+i)+3 = zr+i+1
4 for 0 ≤ i ≤ m. □

Lemma 4.5. Let (∧V, d) = (∧(V0 ⊕ V1), d) be a minimal Sullivan model of an
F0-space, where V is finite dimensional and dV0 = 0, dV1 ⊆ ∧V0. If V even

0 =
Q < x1, . . . , xn > and V odd

1 = Q < y1, . . . , yr >, then the generators y1 . . . , yr are
Gottlieb elements, where the subscripts indicate the degrees.
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Proof. For i ∈ {1, . . . , r}, denote by θi the derivation of ∧V defined by θi(yj) = δij.
A straightforward calculation shows that ∂θi(yi) = 0. Thus, the generators yi are
Gottlieb elements. □
Proposition 4.6. Let M be an F0-space for which π∗(M) ⊗ Q is finite dimen-
sional, and let E = (∧(V0 ⊕ V1), d) be its minimal Sullivan model. Then G∗(E)
is generated by < [y∗1], . . . , [y

∗
r ] > as a vector space, where subscripts indicate the

degrees.
Proof. As E = (∧V, d) = (∧(V0 ⊕ V1), d) with V odd

1 = Q < y1, . . . , yr >, de-
note by θi the derivation of ∧V defined by θi(yj) = δij. It is easily verified that
∂θi(yi) = 0. Then, by Lemma 4.5, the generators y1, . . . , yr are Gottlieb ele-
ments. Also, [θ1], . . . , [θr] are nonzero homology classes in H∗(Der(E,E; 1)). It
follows that ε∗(θ1) = y∗1, . . . , ε∗(y

∗
r). Since M is a simply connected finite CW-

complex, then Geven(E) = 0 [3, Proposition 28.8]. Hence, G∗(E) is generated by
< [y∗1], . . . , [y

∗
r ] > as a vector space. □

5. The main result

We now prove Theorem 1.1.
Proof of Theorem 1.1. By Theorem 4.4, the mapping space maps(HPm,HPm+r, ι)
is modeled by

(∧(z4, z4r+3, z4r+7, . . . , z4(m+r)+3), d),

where dz4 = 0, dz4(r+i)+3 = zr+i+1
4 for 0 ≤ i ≤ m. The fibration S4r+7 → M

p→
HP r is modeled by

(∧(z4, z4r+3), d) → (∧(z4, z4r+3)⊗ ∧z4r+7, D),

where dz4 = 0, dz4r+3 = zr+1
4 , Dz4 = dz4, Dz4r+3 = dz4r+3, Dz4r+7 = zr+2

4 . Since
Dz4r+7 is a coboundary in H∗(∧(z4, z4r+3), d), then, p is a trivial fibration (see
[5]). Hence the cdgas

(C, d) = (∧(z4, z4r+3, z4r+7), d),

where dz4 = 0, dz4r+3 = zr+1
4 , dz4r+7 = zr+2

4 , and
(∧(z4, z4r+3)⊗ ∧z4r+7, D),

where Dz4 = dz4, Dz4r+3 = dz4r+3, Dz4r+7 = 0, are isomorphic. Hence the cdga
(C, d) is a model of HP r × S4r+7. It follows from an induction argument that
maps(HPm,HPm+r, ι) has the rational homotopy type of HP r × S4r+7 × · · · ×
S4(m+r)+3. □

On one hand, we have the following result.

Corollary 5.1. The mapping space maps(HPm,HPm+r, ι) is formal.
On the other hand, consider the inclusion ι : HPm → HPm+r and the corre-

sponding model f : C = (∧(y4, y4(m+r)+3), d) → (∧(x4, x4m+3), d) = E. Forgetting
the desuspension, a model of the inclusion ι∗ : aut1HPm → maps(HPm,HPm+r, ι)
is given by

f ∗ : Der(E,E; 1) → Der(C,E; f).
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The map f ∗ is characterized as follows when r > m.

Theorem 5.2. If r > m, then the induced map
f ∗ : Der(E,E; 1) → Der(C,E; f)

is homotopy trivial.

Proof. Recall that L = Der(E,E; 1) = ⊕m
i=0Qα4i+3⊕Qα4, where α4 = (x4, 1) and

α4i+3 = (x4m+3, x
m−i
4 ) for i = 0, . . . ,m. Then δα4i+3 = 0 and δα4 = (m + 1)α3.

Therefore,
π∗(aut1HPm)⊗Q = H∗(L, δ)) = ⟨[α7], . . . , [α4m+3]⟩.

Hence, aut1HPm has the rational homotopy type of S7 × S11 × · · · × S4m+3. Let
L′ = (Der(C,E; f), ∂) = (⟨⊕r+m

i=r Qβ4i+3 ⊕Qβ4⟩, ∂),

for i = r, r + 1, . . . , r +m. The mapping f ∗ : L → L′ is defined by f ∗(α4),
f ∗(α4i+3) = 0 for i < r, and f ∗(α4i+3) = β4i+3 for i ≥ r. If r > m, then f ∗(α4) = β4

and zero elsewhere. Furthermore,
C∞(s−1L) = (∧(x4, x3, . . . , x4i−1, . . . , x4m+3), d),

where dx4 = 0 and dx4i−1 = xi
4 for i = 1, . . . ,m+ 1. Likewise,

C∞(s−1L′) = (∧(y4, y4r+3, . . . , y4(m+r)+3), d),

where dy4 = 0 and dy4i+3 = xi+1
4 for i = r, r + 1, . . . ,m + r. As C∞(s−1L′) is

quasi-isomorphic to
(∧(w4, w4r+3), d)⊗ (∧(w4r+7, . . . , w4(m+r)+3), 0),

where dw4 = 0, dw4r+3 = wr+1
4 , and C∞(s−1L) is quasi-isomorphic to

(∧(z7, . . . , z4m+3), 0),

and the induced map
φ̄ : (∧(w4, w4r+3, w4r+7, . . . , w4(m+r)+3), d) → (∧(z7, . . . , z4m+3), 0)

between minimal models is zero. □

Definition 5.3. Let f : C → E be a map, where C and E are differential graded
vector spaces. The mapping cone of f, denoted Rel∗(f) (see, for example, [21, 13])
is defined by Relm(f) = Cm−1⊕Em for all m > 1, and D(x, y) = (−dC(x), f(x)+
dE(y)). The chain maps J : Em → Relm(f) and P : Relm(f) → Cm−1 are
defined by J(w) = (0, w) and P (x, y) = x, respectively. These yield a short exact
sequence of chain complexes

0 → E∗
J→ Rel∗(f)

P→ C∗−1 → 0,

a long exact homology sequence of f

· · · → Hm+1(Rel(f))
H(P )→ Hm(C)

H(f)→ Hm(E)
H(J)→ Hm(Rel(f)) → · · · ,

and a connecting homomorphism H(f).
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Following [13], there is a commutative diagram;

Der(E,E; 1)

ε∗
��

f∗
// Der(C,E; f)

ε∗
��

Der(E,Q; ε)
f̂∗

// Der(C,Q; ε),

where ε is the augmentation of either C or E. The homology ladder for m ≥ 2,
is given by

· · · → Hm+1(Rel(f ∗))

H(ε∗,ε∗)
��

H(P )
// Hm(Der(E,E; 1))

H(ε∗)

��

H(f∗)
// Hm(Der(C,E; f)) → · · ·

H(ε∗)

��
· · · → Hm+1(Rel(f̂ ∗))

H(P̂ )
// Hm(Der(E,Q; ε))

H(ϕ̂∗)
// Hm(Der(C,Q; ε)) → · · ·

.

Thus, the mth relative evaluation subgroup of f is defined as follows:

Grel
m = Im{H(ε∗, ε∗) : Hm(Rel(f ∗)) → Hm(Rel(f̂ ∗))}.

The G-sequence of the map f : C → E is given by the sequence

· · · H(Ĵ)→ Grel
m+1(C,E;φ)

H(P̂ )→ Gm(E)
H(f̂∗)→ Gm(C,E; f)

H(Ĵ)→ · · · ,
which terminates in G2(C,E; f). Moreover, in [13, Theorem 3.5], it was shown
that this can be applied to the Sullivan model f : C → E of the map h : M → N.

We are now in position to prove Theorem 1.2 .

Proof of Theorem 1.2. It follows from Theorems 4.1 and 4.3 that
Gm(E) = ⟨[x∗

4m+3]⟩
and that

G∗(C,E; f) = ⟨[y∗4], [y∗4(m+r)+3]⟩.
We begin with the case where r > m. Let α4, α4i+3 ∈ Der(E,E; 1) and β4, β4i+3 ∈
Der(C,E; f) be defined as above. Then, f ∗(α4) = β4 and f ∗(α4i+3) = 0. Further-
more, D(α4, 0) = (0, β4), D(α4i+3, 0) = (0, 0), and D(0, β4) = 0 = D(0, β4i+3).
Therefore, [(α4i+3, 0)] and [(0, β4i+3)] are nonzero in H∗(Rel(f ∗)). We conclude
that

Grel
∗ (C,E; f) = ⟨[(x∗

4m+3, 0)], [(0, y
∗
4(m+r)+3)]⟩.

Hence, the G-sequence reduces to the fragments

0 → Grel
2m+1(C,E; f)

H(P )→
≃

G2m+1(E) → 0,

0 → G4(m+r)+3(C,E; f)
H(J)→
≃

Grel
4(m+r)+3(C,E; f) → 0,

and terminates with
0 → G4(C,E; f) → 0.

As G4(C,E; f) ∼= Q, we conclude that the last fragment of the G-sequence is
not exact. Moreover, if r ≤ m, then f ∗(α4i+3) = β4i+3. Thus, D(α4i+3, 0) =
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(0, β4i+3). Hence, [(x∗
4m+3, 0)] ∈ H∗(Rel(f ∗)) is not in the image of H∗(ε∗, ε∗).

The G-sequence reduces to the fragment
0 → G2m+1(E) → 0,

which is not exact. □
Acknowledgement. The author is very grateful to the referee for his/her

careful reading of this paper. His/her numerous remarks greatly improved this
paper and made it much more readable.

References
1. U. Buijs, Y. Félix and A. Murillo, L∞ models of based mapping spaces, J. Math. Soc. Japan

63 (2011) 503–524.
2. U. Buijs, Y. Félix, and A. Murillo, L∞ rational homotopy of mapping spaces, Rev. Mat.

Comlut. 26 (2013) 573–588.
3. Y. Félix, S. Halperin and J.C. Thomas, Rational homotopy theory, Springer, New York,

2001.
4. Y. Félix, J. Oprea and D. Tanré, Algebraic models in geometry, Oxford University Press,

New York, 2008.
5. J.-B. Gatsinzi, On the genus of elliptic fibrations, Proc. Amer. Math. Soc. 132 (2004),

597–606.
6. J.-B. Gatsinzi, Rational homotopy type of mapping spaces between complex projective spaces

and their evaluation subgroups, Commun. Korean Math. Soc. 37 (2022), 259–267.
7. J.-B. Gatsinzi, O.V. Otieno and P.A. Otieno, Relative Gottlieb groups of the Plücker embed-

ding over some complex Grassmannians, Commun. Korean Math. Soc. 35 (2020) 279–285.
8. J.-B. Gatsinzi, P.A. Otieno and V.O. Otieno, Rational homotopy of mapping spaces between

complex Grassmannians, Quaest. Math. 43 (2020), no. 8, 1109–1120.
9. D.H. Gottlieb, Evaluation subgroups of homotopy groups, Am. J. Math. 91 (1969), 729-756.

10. A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer.
Math. Soc. 273 (1982), 609–620.

11. S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230
(1977) 173–199.

12. T. Lada and , M. Markl, Strongly homotopy Lie algebras, Comm. Algebra. 32 (1995) 1083–
1104.

13. G. Lupton and S.B. Smith, Rationalized evaluation subgroups of a map. I. Sullivan models,
derivations and G-sequences, J. Pure Appl. Algebra. 209 (2007) 159–171.

14. O. Maphane, Derivations of a Sullivan model and the rationalized G-sequence, Int. J. Math.
Math. Sci. 2021, Art. ID 6687527, 5 pp.

15. O. Maphane, Evaluation subgroups of map and the rationalized G-sequence, Armen. J.
Math. 14 (2022) 1–10.

16. O. Maphane, Relative Gottlieb groups of the Plücker embedding over some quaternion
Grassmannians, Commun. Korean Math. Soc. 38 (2023) 257–266.

17. L. Menichi, Rational homotopy—Sullivan models. Free loop spaces in geometry and topology,
111–136, IRMA Lect. Math. Theor. Phys., 24, Eur. Math. Soc., Zürich, 2015.

18. J.M. Møller and M. Raussen, Rational homotopy of spaces of maps into spheres and complex
projective spaces, Trans. Amer. Math. Soc. 292 (1985) 721–732.

19. P.A. Otieno, J.-B. Gatsinzi, and O.V. Otieno, Rationalized evaluation subgroups of mapping
spaces between complex Grassmannians, Afr. Mat. 31 (2020) 297–303.

20. S.B. Smith, Rational L.S. category of function space components for F0-spaces, Bull. Belg.
Math. Soc. 6 (1999) 295–304.

21. E.H. Spanier, Algebraic Topology, Springer-Verlag, New York, 1989, Corrected reprint of
the 1966 original.



RATIONAL HOMOTOPY OF A MAP OF PROJECTIVE QUATERNIONS 107

22. D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES. 47 (1977) 269–331.
23. M.H. Woo and K.Y. Lee, On the relative evaluation subgroups of a CW-pair, J. Korean

Math. Soc. 25 (1988) 149–160.
24. A. Zaim, Evaluation Subgroups of Mapping Spaces over Grassmann Manifolds, Kyungpook

Math. J. 63 (2023) 131–139.

Department of Mathematics and Statistical Sciences, Botswana International
University of Science and Technology, Private Bag 16, Palapye, Botswana.

Email address: maphaneot@biust.ac.bw


	1. Introduction
	2. Preliminaries
	3.  L -models of mapping spaces
	4. Preliminary results
	5. The main result
	References

