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Abstract. In this paper, we introduce the complex Levi-Civita field C. We
start by reviewing the algebraic structure of the field; in particular, C is the
smallest non-Archimedean valued field extension of the complex numbers field
C that is algebraically closed and complete in the valuation topology.

Two topologies on C will be studied in detail: the valuation topology induced
by a non-Archimedean valuation on the field and another weaker topology
induced by a family of seminorms, which we will call weak topology. We show
that each of the two topologies results from a metric on C and that the valuation
topology is not a vector topology, while the weak topology is. Then, we give
simple characterizations of open, closed, and compact sets in both topologies.

Finally, we define continuity and differentiability for a C-valued function at
a point or on a subset of C, we present key results for such functions, and we
set the foundations for a Cauchy-like analysis theory on the field C.

1. Introduction

In this section, we introduce the Levi-Civita field R and its complex counterpart
C, and we briefly review their algebraic properties. We recall that the elements of
R and C are functions from Q to R and C, respectively, with left-finite support
(denoted by supp). That is, below every rational number q, there are only finitely
many points where the given function does not vanish. For the further discussion,
it is convenient to introduce the following terminology.
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Definition 1.1 (λ, ∼, ≈, =q). For x 6= 0 in R or C, we let λ(x) = min(supp(x)),
which exists because of the left-finiteness of supp(x), and we let λ(0) = +∞.
Moreover, we denote the value of x at q ∈ Q with brackets like x[q].

Given x, y 6= 0 in R or C, we say x ∼ y if λ(x) = λ(y), and we say x ≈ y
if λ(x) = λ(y) and x[λ(x)] = y[λ(y)]. Finally, for any q ∈ Q, we say x =q y if
x[p] = y[p] for all p ≤ q in Q.

At this point, these definitions may feel somewhat arbitrary, but after having
introduced an order on R, we will see that λ describes orders of magnitude, the
relation ≈ corresponds to agreement up to infinitely small relative error, while ∼
corresponds to agreement of order of magnitude.

The sets R and C are endowed with formal power series multiplication and
componentwise addition, which make them fields [14,16] in which we can isomor-
phically embed R and C (respectively) as subfields via the map E : R,C→ R, C
defined by

E(x)[q] =

{
x if q = 0,
0 else. (1.1)

Definition 1.2 (Order on R). Let x, y ∈ R be given. Then we say that x > y
(or y < x) if x 6= y and (x − y)[λ(x − y)] > 0, and we say x ≥ y (or y ≤ x) if
x = y or x > y.

It follows that the relation ≥ (or ≤) defines a total order on R, which makes it
into an ordered field. Moreover, embedding E in (1.1) of R into R is compatible
with the order.

The order leads to the definition of an ordinary absolute value on R:

|x|o = max{x,−x} =

{
x if x ≥ 0,
−x if x < 0,

which induces the same topology on R (called the order topology or valuation
topology, and denoted by τv) as that induced by the ultrametric absolute value:

|x| =
{

e−λ(x) if x 6= 0,
0 if x = 0,

as was shown in [19]. Moreover, two corresponding absolute values are defined
on C in the natural way: For z = x+ iy ∈ C, with x, y ∈ R,

|z|o =
√
x2 + y2, and

|z| =

{
e−λ(z) if z 6= 0,
0 if z = 0,

= max{|x|, |y|}.

Thus, C is topologically isomorphic to R2 provided with the product topology
induced by |·|o (or |·|) in R.

We note in passing here that |·| is a non-Archimedean valuation on R (resp.,
C); that is, it satisfies the following properties:

(1) |v| ≥ 0 for all v ∈ R (resp., v ∈ C) and |v| = 0 if and only if v = 0;
(2) |vw| = |v||w| for all v, w ∈ R (resp., v, w ∈ C);
(3) |v + w| ≤ max{|v|, |w|} for all v, w ∈ R (resp., v, w ∈ C): the strong

triangle inequality.
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Thus, (R, | · |) and (C, | · |) are non-Archimedean valued fields. Moreover, the map
Λ : R×R → R (resp., Λ : C × C → R), given by

Λ(u, v) =

{
e−λ(u−v) if u 6= v
0 if u = v,

is an ultrametric on R (resp., C), which makes it into an ultrametric space.
Besides the usual order relations on R, some other notations are convenient.

Definition 1.3. (�,�) Let x, y ∈ R be nonnegative. We say x is infinitely
smaller than y (and write x � y) if nx < y for all n ∈ N; we say x is infinitely
larger than y (and write x � y) if y � x. If x � 1, we say x is infinitely small;
if x � 1, we say x is infinitely large. Infinitely small numbers are also called
infinitesimals or differentials. Infinitely large numbers are also called infinite.
Nonnegative numbers that are neither infinitely small nor infinitely large are also
called finite.

Remark 1.4. For ξ, ζ ∈ R (resp., ξ, ζ ∈ C), we have
|ξ|o � |ζ|o ⇔ |ξ| < |ζ| ⇔ λ(ξ) > λ(ζ).

Moreover, for ξ 6= 0 in R (resp., C), we have
ξ ∼ |ξ|o ∼ 1 and |ξ| = 1.

Definition 1.5 (The Number d). Let d be the element of R given by d[1] = 1
and d[t] = 0 for t 6= 1.

It follows that, given a rational number q, then dq is given by

dq[t] =

{
1 if t = q,
0 otherwise.

It is easy to check that 0 < dq � 1 (resp., |dq| < 1) if q > 0, and dq � 1 (resp.,
|dq| > 1) if q < 0 in Q. Moreover, for all ξ ∈ R (resp., C), the elements of supp(ξ)
can be arranged in ascending order, say supp(ξ) = {q1, q2, . . .} with qj < qj+1 for
all j, and ξ can be written as ξ =

∞∑
j=1

ξ[qj]d
qj , where the series converges in the

valuation topology.
Altogether, it follows that R (resp., C) is a non-Archimedean field extension

of R (resp., C). For a detailed study of these fields, we refer the reader to the
survey paper [16] and the references therein. In particular, it is shown that R
and C are complete with respect to the natural (valuation) topology.

It follows therefore that the fields R and C are just special cases of the class
of fields discussed in [13]. For a general overview of the algebraic properties of
formal power series fields in general, we refer the reader to the comprehensive
overview by Ribenboim [10], and for an overview of the related valuation theory
to the books by Krull [8], Schikhof [13] and Alling [1]. A thorough and complete
treatment of ordered structures can also be found in [9]. A more comprehensive
survey of all non-Archimedean fields can be found in [2].

Besides being the smallest ordered non-Archimedean field extension of the real
numbers that is both Cauchy complete in the order topology and real closed [14],
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the Levi-Civita field R is of particular interest because of its practical usefulness.
Since the supports of the elements of R are left-finite, it is possible to represent
these numbers on a computer, and having infinitely small numbers in the field
allows for many computational applications [7, 14]. One such application is the
computation of derivatives of real functions representable on a computer [17],
where both the accuracy of formula manipulators and the speed of classical nu-
merical methods are achieved. Similarly, C is the smallest non-Archimedean
valued field extension of C that is Cauchy complete in the valuation topology
and algebraically closed.

2. The topological structure of C

In this section, we study two topologies on C: one induced naturally by the
valuation | · | mentioned in the introduction above, which we call the valuation
topology, and another weaker topology induced by a family of seminorms, which
we call weak topology.

2.1. Valuation topology τv. We start this subsection by recalling that the val-
uation topology is induced by the non-Archimedean valuation | · | : C → R given
by

|z| =
{

e−λ(z) if z 6= 0,
0 if z = 0,

or, equivalently, by the ultrametric Λ : C × C → R given by Λ(z, ξ) = |z − ξ|.

Definition 2.1. For z ∈ C, r > 0 in R, and t > 0 in R, let
Bv(z, r) = {ξ ∈ C : |ξ − z| < r},
Bv[z, r] = {ξ ∈ C : |ξ − z| ≤ r},
Bo(z, t) = {ξ ∈ C : |ξ − z|o < t},
Bo[z, t] = {ξ ∈ C : |ξ − z|o ≤ t}.

It is easy to check that the family of sets
τv := {O ⊂ C : for all z ∈ O, there exists r > 0 in R such that Bv(z, r) ⊂ O}

is indeed a topology on C. Moreover,
τv = {A ⊂ C : for all z ∈ A, there exists t > 0 in R such that Bo(z, t) ⊂ A}.

That is, the ordinary absolute value | · |o and the non-Archimedean absolute value
| · | induce the same topology, namely, τv, on C.

Definition 2.2. Let A ⊂ C. Then we say that A is open in (C, τv) if A ∈ τv. We
say that A is closed in (C, τv) if C \ A ∈ τv.

Like in any ultrametric space, each ball of the form Bv(z0, r) or Bv[z0, r] with
z0 ∈ C and r > 0 in R, is both open and closed (clopen) in (C, τv) [2, Theorem
1.6].

Definition 2.3. Let A ⊂ C. Then we say that A is compact in (C, τv) if every
open cover of A in (C, τv) has a finite subcover.
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Remark 2.4. Since τv is induced by a metric on C, it follows by the Borel–Lebesgue
theorem (see, for example, [5, Section 9.2]) that A is compact in (C, τv) if and
only if A is sequentially compact.
Theorem 2.5. The space (C, τv) is a totally disconnected topological space. It is
Hausdorff and not locally compact. There are no countable bases. The topology
induced to C is the discrete topology.
Proof. Let A ⊂ C contain more than one point, and let ζ 6= ξ in A be given. Let

G1 = {z ∈ C : |z − ξ| < |ζ − ξ|} and G2 = C \G1.

Then G1 and G2 are disjoint and open in (C, τv), ξ ∈ G1 ∩ A, ζ ∈ G2 ∩ A, and
A ⊂ G1∪G2 = C. This shows that any subset of (C, τv) containing more than one
point is disconnected, and hence (C, τv) is totally disconnected. It follows that
(C, τv) is Hausdorff. That (C, τv) is Hausdorff, also follows from the fact that it
is a metric space [6, p. 66, Problem 7(a)].

To prove that (C, τv) is not locally compact, let z ∈ C be given and let U be a
neighborhood of z. We show that the closure Ū of U is not compact. Let ϵ > 0
in R be such that ln ϵ ∈ Q and Bv(z, ϵ) ⊂ U . Consider the sets

M0 = C \Bv(z, ϵ),

Mn = {ξ ∈ C : − ln ϵ+ n− 1 < λ(ξ − z) ≤ − ln ϵ+ n} for n ∈ N.
Then it is easy to check that Mn is open in (C, τv) for all n ≥ 0 and that⋃∞

n=1 Mn = {ξ ∈ C : λ(ξ − z) > − ln ϵ} = Bv(z, ϵ). It follows that
⋃∞

n=0Mn = C
and hence Ū ⊂

⋃∞
n=0 Mn. Moreover, it is impossible to select finitely many of the

Mn’s to cover Ū because each of the infinitely many elements ξn := z + d− ln ϵ+n

of Ū , n = 1, 2, 3, . . ., is contained only in the set Mn.
There cannot be any countable bases because the uncountably many open sets

MZ = Bv(Z, 1/2), with Z ∈ C, are disjoint. The open sets induced on C by the
sets MZ are just the singletons {Z}. Thus, in the induced topology, all sets are
open and the topology is therefore discrete. □
Remark 2.6. A detailed study of the properties in Theorem 2.5 reveals that they
hold in an identical way in any non-Archimedean valued field, and thus the above
unusual properties are not specific to C.

As an immediate consequence of the fact that (C, τv) is not locally compact,
we obtain the following result.
Corollary 2.7. None of the balls Bv(z0, r), Bv[z0, r], Bo(z0, t), or Bo[z0, t] are
compact in (C, τv) for all z0 ∈ C, r > 0 in R and t > 0 in R.

Since τv is induced on C by the ultrametric valuation | · |, we define the bound-
edness of a set in (C, τv) as follows.
Definition 2.8. Let A ⊂ C. Then we say that A is bounded in (C, τv) if there
exists M > 0 in R such that |z| ≤ M for all z ∈ A.
Proposition 2.9. Let A be compact in (C, τv). Then A is closed and bounded in
(C, τv). Moreover, A has an empty interior in (C, τv); that is,

intv(A) := {a ∈ A : there exists r > 0 in R 3 Bv(a, r) ⊂ A} = ∅.
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Proof. That A is closed in (C, τv) follows from the fact that (C, τv) is a Hausdorff
topological space and A is compact in (C, τv) [11, p. 36].

Now, we show that A is bounded in (C, τv). For each n ∈ N, let Gn = Bv(0, n).
Then, for each n ∈ N, Gn is open in (C, τv). Moreover, A ⊂

⋃
n∈NGn = C. Since

A is compact in (C, τv), we can choose a finite subcover; thus, there is m ∈ N and
there exist j1 < j2 < . . . < jm in N such that

A ⊂
m⋃
l=1

Gjl = Gjm = Bv(0, jm).

It follows that |z| < jm for all z ∈ A, and hence A is bounded in (C, τv).
Finally, we show that intv(A) = ∅. Assume to the contrary that intv(A) 6= ∅.

Then there exist z0 ∈ A and r > 0 in R such that Bv(z0, r) ⊂ A. Since Bv(z0, r)
is a closed subset of the compact set A, it follows that Bv(z0, r) is compact in
(C, τv), which contradicts Corollary 2.7. □

The following examples show that there are countably infinite closed and
bounded sets that are not compact, and there are uncountable sets that are
compact in (C, τv).

Example 2.10. Let A = [0, 1] ∩ Q. Then, clearly, A is countably infinite and
bounded in (C, τv). We show that A is closed in (C, τv). Let z ∈ C \ A be given
and let G0 = Bv(z, 1/2). If G0 ∩ A 6= ∅, then there exists q ∈ A such that
G0 ∩ A = {q}. Let r = |q − z| and let G = Bv(z, r). Then G is open in (C, τv)
and G ∩ A = ∅. Thus, C \ A is open, and hence A is closed in (C, τv).

Next, we show that A is not compact in (C, τv). For each q ∈ A, let Gq =
Bv(q, 1/2). Then Gq is open in (C, τv) for each q and A ⊂

⋃
q∈A Gq, but we

cannot select a finite subcover since each t ∈ A is contained only in Gt.

Example 2.11. Let CR denote the Cantor-like set constructed in the same way
as the standard real Cantor set C, but instead of deleting the middle third, we
delete from the middle an open interval (1 − 2d) times the size of each of the
closed subintervals of [0, 1] at each step of the construction. Then CR is compact
in (C, τv).

It turns out that if we view C as an infinite-dimensional vector space over C
then τv is not a vector topology; that is, (C, τv) is not a linear topological space.

Theorem 2.12. τv is not a vector topology.

Proof. Assume to the contrary that τv is a vector topology. Then, by the conti-
nuity of scalar multiplication, there exists an open set OC ⊂ C and there exists
an open set OC ⊂ C such that αz ∈ Bv(1, 1/2) for all α ∈ OC and for all z ∈ OC.
Let α0 ∈ OC and z0 ∈ OC be given. Since OC is open in C, there exists r > 0 in
R such that BC(α0, 2r) := {β ∈ C : |β − α0|o < 2r} ⊂ OC. Hence

α0z0 ∈ Bv(1, 1/2) and (α0 + r)z0 ∈ Bv(1, 1/2).
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Since α0z0 ∈ Bv(1, 1/2), it follows that |α0z0−1| < 1
2

and hence |z0| = |α0z0| = 1.
Using the strong triangle inequality, we obtain

|rz0| = |[(α0 + r)z0 − 1]− [α0z0 − 1]|

≤ max {|(α0 + r)z0 − 1|, |α0z0 − 1|} <
1

2
,

which contradicts the fact that |rz0| = 1, since |r| = 1 = |z0|. □

Since any normed vector space, with the metric topology induced by its norm,
is a linear topological space (see [4, Proposition III.1.3]), we readily infer from
Theorem 2.12 that there can be no norm on C that would induce the same topol-
ogy as τv on C.

2.2. Weak topology. In the following section, we will think of C as an infinite-
dimensional vector space over C. We define a family of semi-norms on C, which
induces a topology weaker than the valuation topology, called the weak topology.

Definition 2.13. Given r ∈ R, we define a mapping ‖ · ‖r : C → R as follows:
‖z‖r = max{|z[q]|o : q ∈ Q and q ≤ r}.

The maximum in Definition 2.13 exists in R since, for any r ∈ R, only finitely
many of the z[q]’s considered do not vanish.

Definition 2.14. For z ∈ C and r > 0 in R, we define

Bw(z, r) = {ξ ∈ C : ‖ξ − z‖1/r < r} and
Bw[z, r] = {ξ ∈ C : ‖ξ − z‖1/r ≤ r}.

Lemma 2.15. Let 0 < r2 < r1 be given in R, let r = min{r2, r1 − r2}, and let
z ∈ C be given. Then for all ξ ∈ Bw(z, r), we have Bw(ξ, r2) ⊂ Bw(z, r1). In
particular, Bw(z, r2) ⊂ Bw(z, r1).

Proof. Let ξ ∈ Bw(z, r) be given. We show that Bw(ξ, r2) ⊂ Bw(z, r1). So let
ζ ∈ Bw(ξ, r2) be given. Then ‖ζ − ξ‖1/r2 < r2. It follows that

‖ζ − z‖1/r1 ≤ ‖ζ − z‖1/r2 ≤ ‖ζ − ξ‖1/r2 + ‖ξ − z‖1/r2
< r2 + ‖ξ − z‖1/r2
≤ r2 + ‖ξ − z‖1/r
< r2 + r ≤ r2 + (r1 − r2)

= r1.

Thus ζ ∈ Bw(z, r1) for all ζ ∈ Bw(ξ, r2), and hence Bw(ξ, r2) ⊂ Bw(z, r1).
Finally, since z ∈ Bw(z, r), it follows that Bw(z, r2) ⊂ Bw(z, r1). □

Proposition 2.16. The family of subsets of C

τw := {O ⊂ C : for all z ∈ O, there exists r > 0 in R such that Bw(z, r) ⊂ O}

is a topology on C.
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Proof. Let {Oα}α∈A be a collection of elements of τw. We show that
⋃

α∈A Oα ∈
τw. So let z ∈

⋃
α∈AOα be given. Then there exists α0 ∈ A such that z ∈ Oα0 .

Since Oα0 ∈ τw, there exists r > 0 in R such that Bw(z, r) ⊂ Oα0 . Thus,
Bw(z, r) ⊂

⋃
α∈A Oα.

Next, we show that τw is closed under finite intersections: It suffices to show
that if O1, O2 ∈ τw, then O1 ∩O2 ∈ τw. So let O1, O2 ∈ τw and let z ∈ O1 ∩O2 be
given. Then there exist r1, r2 > 0 in R such that Bw(z, r1) ⊂ O1 and Bw(z, r2) ⊂
O2. Let r = min{r1, r2}. Then, using Lemma 2.15, we obtain that Bw(z, r) ⊂
Bw(z, r1) ⊂ O1 and Bw(z, r) ⊂ Bw(z, r2) ⊂ O2. Thus, Bw(z, r) ⊂ O1 ∩O2.

That ∅ and C are both elements of τw is clear. It follows that τw is a topology
on C and hence (C, τw) is a topological space. □

As Theorems 2.17 and 2.18 below will show, there is a translation invariant
metric on C that induces the topology τw on C.

Theorem 2.17. The map ∆ : C × C → R, given by

∆(z, ξ) =
∞∑
k=1

2−k ‖z − ξ‖k
1 + ‖z − ξ‖k

, (2.1)

is a translation invariant metric.

Proof. ∆ is positive-definite: It is clear that ∆(z, ξ) ≥ 0 for all z, ξ ∈ C. Moreover,
for all z, ξ ∈ C,

∆(z, ξ) = 0 ⇔ ‖z − ξ‖k = 0 for all k ∈ N,
⇔ (z − ξ)[q] = 0 for all q ≤ k in Q, for all k ∈ N,
⇔ (z − ξ)[q] = 0 for all q ∈ Q,
⇔ z = ξ.

∆ is symmetric: For all z, ξ ∈ C, we have

∆(z, ξ) =
∞∑
k=1

2−k ‖z − ξ‖k
1 + ‖z − ξ‖k

=
∞∑
k=1

2−k ‖ξ − z‖k
1 + ‖ξ − z‖k

= ∆(ξ, z).

∆ satisfies the triangle inequality: Let ξ, ζ, z ∈ C be given. Then, for all k ∈ N,
we have

‖ξ − ζ‖k
1 + ‖ξ − ζ‖k

= 1− 1

1 + ‖ξ − ζ‖k
≤ 1− 1

1 + ‖ξ − z‖k + ‖ζ − z‖k

=
‖ξ − z‖k

1 + ‖ξ − z‖k + ‖ζ − z‖k
+

‖ζ − z‖k
1 + ‖ξ − z‖k + ‖ζ − z‖k

≤ ‖ξ − z‖k
1 + ‖ξ − z‖k

+
‖ζ − z‖k

1 + ‖ζ − z‖k
.
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Thus,

∆(ξ, ζ) =
∞∑
k=1

2−k ‖ξ − ζ‖k
1 + ‖ξ − ζ‖k

≤
∞∑
k=1

2−k ‖ξ − z‖k
1 + ‖ξ − z‖k

+
∞∑
k=1

2−k ‖ζ − z‖k
1 + ‖ζ − z‖k

= ∆(ξ, z) + ∆(ζ, z).

Finally, for all ξ, ζ, z ∈ C, we have

∆(ξ + z, ζ + z) =
∞∑
k=1

2−k ‖(ξ + z)− (ζ + z)‖k
1 + ‖(ξ + z)− (ζ + z)‖k

=
∞∑
k=1

2−k ‖ξ − ζ‖k
1 + ‖ξ − ζ‖k

= ∆(ξ, ζ).

□

Next, we will show that the metric ∆ introduced above induces the same topol-
ogy on C as the weak topology τw.

Theorem 2.18. Let τ∆ denote the topology induced by the metric ∆ in (2.1).
Then τ∆ = τw.

Proof. First, we show that τ∆ ⊆ τw. Let O ∈ τ∆, and let z ∈ O be given. Then
there exists r > 0 in R such that

B∆(z, r) := {ξ ∈ C : ∆(z, ξ) < r} ⊂ O.

Let j ∈ N be such that j > 2/r. Then

2−j <
1

j
<

r

2
.

We show that Bw(z, 1/j) ⊂ O: Let ξ ∈ Bw(z, 1/j) be given. Then ‖z−ξ‖j < 1/j.
It follows that

‖z − ξ‖k <
1

j
≤ 1

k
for 1 ≤ k ≤ j.
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Thus,

∆(z, ξ) =
∞∑
k=1

2−k ‖z − ξ‖k
1 + ‖z − ξ‖k

=

j∑
k=1

2−k ‖z − ξ‖k
1 + ‖z − ξ‖k

+
∞∑

k=j+1

2−k ‖z − ξ‖k
1 + ‖z − ξ‖k

≤
j∑

k=1

2−k‖z − ξ‖k +
∞∑

k=j+1

2−k

<
1

j

j∑
k=1

2−k + 2−j

∞∑
k=1

2−k

<
1

j
+ 2−j

<
r

2
+

r

2
= r.

Hence ξ ∈ B∆(z, r) ⊂ O. Thus, Bw(z, 1/j) ⊂ O. This shows that O ∈ τw.
Next, we show that τw ⊆ τ∆. Let O ∈ τw, and let z ∈ O be given. Then there

exists M ∈ R such that 0 < M < 1 and Bw(z,M) ⊂ O. Choose j ∈ N such that
j > 1/M . We show that B∆

(
z,M2−(j+1)

)
⊂ O. So let ξ ∈ B∆

(
z,M2−(j+1)

)
be

given. Then

∆(z, ξ) =
∞∑
k=1

2−k ‖z − ξ‖k
1 + ‖z − ξ‖k

< M2−(j+1).

Thus,
2−j ‖z − ξ‖j

1 + ‖z − y‖j
<

M

2
2−j, and hence ‖z − ξ‖j

1 + ‖z − ξ‖j
<

M

2
.

It follows that
‖z − ξ‖j <

M

2−M
< M since 0 < M < 1.

Therefore,
‖z − ξ‖1/M ≤ ‖z − ξ‖j < M,

and hence ξ ∈ Bw(z,M) ⊂ O. Thus, B∆

(
z,M2−(j+1)

)
⊂ O. This shows that

O ∈ τ∆. □
It turns out that the weak topology is the most useful topology for considering

the convergence of sequences and series in general; see [15] and the references
therein. Moreover, it is of great importance for the implementation of the R
calculus on computers [17].

Definition 2.19. Let A ⊂ C. Then, we say that A is open in (C, τw) if A ∈ τw.
We say that A is closed in (C, τw) if its complement C \ A ∈ τw.

Since, by Theorem 2.18, τw is induced by a metric on C. We define compactness
in (C, τw) just as we did in (C, τv) (see Definition 2.3) and as in any other metric
space. Moreover, the following result follows readily.
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Proposition 2.20. Let A ⊂ C. Then A is closed in (C, τw) if and only if whenever
(an)n∈N is a sequence of elements in A that converges in (C, τw) to a ∈ C, then
a ∈ A.

Proposition 2.21. (C, τw) is a Hausdorff topological space. The topology induced
on C by the weak topology is the usual topology on C.

Proof. That (C, τw) is a Hausdorff topological space follows from the fact that it
is a metric space.

Considering elements of C, their supports (when viewed as elements of C) are
all equal to {0}. Therefore, the open sets in (C, τw) correspond to the open subsets
of C in its usual topology. □

Proposition 2.22. Let G ⊂ C be open in (C, τw). Then G is open in (C, τv).

Proof. Let z ∈ G be given. Then there exists r > 0 in R such that Bw(z, r) ⊂ G.
Let n ∈ N be such that n > 1/r. We show that Bv (z, e

−n) ⊂ G.
Let ξ ∈ Bv (z, e

−n) be given. Then |ξ − z| < e−n. Thus, e−λ(ξ−z) < e−n,
and hence λ(ξ − z) > n. It follows that (ξ − z)[q] = 0 for all q < n. In
particular, (ξ − z)[q] = 0 for all q ≤ 1/r, and hence ‖ξ − z‖1/r = 0 < r. Thus,
ξ ∈ Bw(z, r) ⊂ G for all ξ ∈ Bv (z, e

−n). It follows that Bv (z, e
−n) ⊂ G, and

hence G is open in (C, τv). □

The following example shows that the converse of Proposition 2.22 is not true.

Example 2.23. The ball Bv(0, 1) is open in (C, τv), but we show that it is not
open in (C, τw). Let r > 0 in R be given. Let z = (r/2)d−1; then z /∈ Bv(0, 1)
since |z − 0| = |z| = e > 1, but z ∈ Bw(0, r) since ‖z‖1/r = r/2 < r. It follows
that Bw(0, r) 6⊂ Bv(0, 1) for all r > 0, and hence Bv(0, 1) is not open in (R, τw).

Remark 2.24. Similarly, we can show that none of the balls Bv(z0, r), Bv[z0, r],
Bo(z0, t), or Bo[z0, t] are open in (C, τw) for all z0 ∈ C, r > 0 in R and t > 0 in R.

It follows from Proposition 2.22 and Example 2.23 that the weak topology is
strictly weaker than the valuation topology (τw ⊊ τv).

Corollary 2.25. Let A ⊂ C be closed in (C, τw). Then A is closed in (C, τv).

Corollary 2.26. Let A ⊂ C be compact in (C, τv). Then A is compact in (C, τw).

One of the advantages of the weak topology τw over the valuation topology τv
is that the former is a vector topology as the following theorem shows while the
latter is not (Theorem 2.12).

Theorem 2.27. The space (C, τw) is a linear topological space; that is, τw is a
vector topology.

Proof. First, we show that + is continuous on (C, τw) × (C, τw). Let O be open
in (C, τw). We need to show that the inverse image A of O under + is open in
(C, τw) × (C, τw). So let (z1, z2) ∈ A be given. Then z1 + z2 ∈ O. Since O is
open in (C, τw), there exists r > 0 in R such that Bw(z1 + z2, r) ⊂ O. Now let
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ξ ∈ Bw(z1, r/2) and ζ ∈ Bw(z2, r/2) be given. Then

‖ξ + ζ − (z1 + z2)‖1/r ≤ ‖ξ − z1‖1/r + ‖ζ − z2‖1/r
≤ ‖ξ − z1‖2/r + ‖ζ − z2‖2/r
<

r

2
+

r

2
= r.

Thus, ξ + ζ ∈ Bw(z1 + z2, r) ⊂ O, and hence (ξ, ζ) ∈ A. It follows that
Bw(z1, r/2)×Bw(z2, r/2) ⊂ A. Hence A is open in (C, τw)× (C, τw).

Next, we show that scalar multiplication · : C×(C, τw) → (C, τw) is continuous.
Let O be open in (C, τw) and let S denote the inverse image of O under ·. We
show that S is open in C × (C, τw). So let (α, z) ∈ S be given. Then αz ∈ O.
Hence there exists r > 0 in R such that Bw(αz, r) ⊂ O.

First, assume that α = 0; then αz = 0. As a first subcase, assume that
‖z‖1/r = 0. Then we claim that BC(0, 1) × Bw(z, r) ⊂ S: Let β ∈ BC(0, 1) and
ξ ∈ Bw(z, r) be given. Then

‖βξ‖1/r = |β|o‖ξ‖1/r < ‖ξ‖1/r
≤ ‖ξ − z‖1/r + ‖z‖1/r
= ‖ξ − z‖1/r
< r.

Thus, βξ ∈ Bw(0, r) ⊂ O and hence (β, ξ) ∈ S. As a second subcase, assume
that ‖z‖1/r 6= 0. Let

r1 = min

{
1

2
,

r

2‖z‖1/r

}
.

Then r1 > 0 and r1 ∈ R. We claim that BC(0, r1) × Bw(z, r) ⊂ S: Let β ∈
BC(0, r1) and ξ ∈ Bw(z, r) be given. Then

‖βξ‖1/r = ‖β(ξ − z) + βz‖1/r
≤ |β|o‖ξ − z‖1/r + |β|o‖z‖1/r
< r1r + r1‖z‖1/r

≤ 1

2
r +

r

2‖z‖1/r
‖z‖1/r = r.

Thus, βξ ∈ Bw(0, r) ⊂ O, and hence (β, ξ) ∈ S.
Now assume that α 6= 0. Let

r1 = min

{
r

2
,

r

2|α|o

}
and

η =


1/2 if ‖z‖1/r = 0

min
{

1
2
, r
4∥z∥1/r

}
if ‖z‖1/r 6= 0.
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Then r1 > 0 and η > 0 in R. We claim that BC(α, η) × Bw(z, r1) ⊂ S: Let
β ∈ BC(α, η) and ξ ∈ Bw(z, r1) be given. Then

‖βξ − αz‖1/r = ‖(β − α)(ξ − z) + (β − α)z + α(ξ − z)‖1/r
≤ |β − α|o‖ξ − z‖1/r + |β − α|o‖z‖1/r + |α|o‖ξ − z‖1/r.

Since r1 ≤ r/2 < r, we have

‖ξ − z‖1/r ≤ ‖ξ − z‖1/r1 < r1 ≤
r

2|α|o
, and hence |α|o‖ξ − z‖1/r <

r

2
.

Also,
|β − α|o‖ξ − z‖1/r < |β − α|or1 < η

r

2
≤ r

4
,

and
|β − α|o‖z‖1/r ≤ η‖z‖1/r ≤

r

4
.

Altogether, we get that

‖βξ − αz‖1/r <
r

4
+

r

4
+

r

2
= r.

Thus, βξ ∈ Bw(αz, r) ⊂ O, and hence (β, ξ) ∈ S. □
Because of the continuity of addition, it is easy to see that the mapping of

translation by fixed z0 ∈ C (that is, the map z 7→ z + z0, z ∈ C) is a homeo-
morphism of C onto itself. For this reason, the neighborhood structure at any
point of C is the same as the neighborhood structure at 0, and it is sufficient to
study the neighborhoods of 0 (henceforth referred to as the zero-neighborhoods.)
Before we start our discussion of the zero-neighborhoods, we recall the following
definitions.

Definition 2.28. Let A ⊂ C. Then
(a) We say that A is circled if αz ∈ A for every z ∈ A and every α ∈ C

satisfying |α|o ≤ 1.
(b) We say that A is absorbing if for every z ∈ C, there exists δ > 0 in R such

that tz ∈ A for every t ∈ C satisfying |t|o ≤ δ.

Lemma 2.29. For all r > 0 in R, the ball Bw(0, r) ⊂ C is circled and absorbing.
Proof. Let r > 0 in R be given. First, we show that Bw(0, r) is circled. So let
z ∈ Bw(0, r) and let α ∈ C be such that |α|o ≤ 1. Then

‖αz‖1/r = |α|o‖z‖1/r ≤ ‖z‖1/r < r,

and hence αz ∈ Bw(0, r).
Next, we show that Bw(0, r) is absorbing. So let z ∈ C be given. We need to

find δ > 0 in R such that tz ∈ Bw(0, r) for every t ∈ C satisfying |t|o ≤ δ. Let

δ =


r

2∥z∥1/r
if ‖z‖1/r 6= 0

1 if ‖z‖1/r = 0.

Then δ > 0 in R. Moreover, for t ∈ C satisfying |t|o ≤ δ, we have
‖tz‖1/r = |t|o‖z‖1/r ≤ δ‖z‖1/r < r,
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and hence tz ∈ Bw(0, r). □
Of the family of circled and absorbing open balls {Bw(0, r) : 0 < r ∈ R}, we

can select a countable local base for the topology τw at 0.

Proposition 2.30. The set {Bw(0, q) : 0 < q ∈ Q} is a local base for τw at 0.

Proof. We need to show that for each O ∈ τw that contains 0, there exists q > 0
in Q such that Bw(0, q) ⊂ O. So let O ∈ τw be given such that 0 ∈ O. Then there
exists r > 0 in R such that Bw(0, r) ⊂ O. Let q ∈ Q be such that 0 < q < r.
Then it follows from Lemma 2.15 that Bw(0, q) ⊂ Bw(0, r) ⊂ O. □
Corollary 2.31. The set {Bw(0, q) : 0 < q ∈ Q} is a countable base for the
zero-neighborhoods in (C, τw). That is, for each zero-neighborhood N there exists
q > 0 in Q such that Bw(0, q) ⊂ N .

Remark 2.32. It follows from the above discussion of the open weak balls Bw(0, r)
that Bw[0, r] too is a circled and absorbing zero-neighborhood for each r > 0 in R.
Moreover, {Bw[0, q] : 0 < q ∈ Q} is a countable base for the zero-neighborhoods
in C.

Recall that in a Banach space, a set is called bounded if it is bounded in norm.
However, the appropriate generalization of this is not so obvious for spaces with
no norm. Even in metric spaces, problems can arise. If we try to mimic the
Banach space situation and say that a set is bounded in (C, τw) if and only if it
is contained in some metric ball (using, for example, the metric of Theorem 2.17
which, by Theorem 2.18, induces the topology τw on C), then we have a problem:
C and hence any subset of C is bounded since all of C is contained in a ball of
radius one! We define the boundedness of a set in (C, τw) as in any other linear
topological space (see, for example, [12, p. 8]).

Definition 2.33. Let A,B ⊂ C. Then we say that B absorbs A or that A is
absorbed by B if there exists ρ > 0 in R such that A ⊂ αB for all α ∈ C satisfying
|α|o ≥ ρ. We say that A is bounded in (C, τw) if every zero-neighborhood absorbs
A.

Proposition 2.34. Let A ⊂ C be compact in (C, τw). Then A is closed and
bounded in (C, τw).

Proof. That A is closed in (C, τw) follows from the fact that (C, τw) is a Hausdorff
topological space [11, p. 36].

Now, we show that A is bounded in (C, τw). We need to show that every zero-
neighborhood in (C, τw) absorbs A. So let U be a zero-neighborhood in (C, τw).
Then there exists r > 0 in R such that Bw(0, r) ⊂ U . Let V = Bw(0, r/2); then
V + V ⊂ Bw(0, r) ⊂ U , for if z, ξ ∈ V , then

‖z + ξ‖1/r ≤ ‖z‖1/r + ‖ξ‖1/r ≤ ‖z‖2/r + ‖ξ‖2/r <
r

2
+

r

2
= r.

The family of sets {a + V : a ∈ A} is an open cover of A in (C, τw). By the
compactness of A, we can select a finite subcover: Thus, there exists n ∈ N, and
there exist a1, . . . , an ∈ A such that A ⊂

⋃n
j=1(aj + V ). Since V = Bw(0, r/2)
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is absorbing in (C, τw), there exists ρ > 1 in R such that aj ∈ αV for all j ∈
{1, . . . , n} and for all α ∈ C satisfying |α|o ≥ ρ. Thus for each j = 1, . . . , n, we
have

aj + V ⊂ aj + αV ⊂ αV + αV = α(V + V ) ⊂ αU

for all α ∈ C satisfying |α|o ≥ ρ. Hence

A ⊂
n⋃

j=1

(aj + V ) ⊂ αU

for all α ∈ C satisfying |α|o ≥ ρ. Thus, U absorbs A. □
Proposition 2.35. Bv(0, 1) is not bounded in (C, τw).
Proof. It suffices to show that Bv(0, 1) is not absorbed by Bw(0, 1). That is, it
suffices to show that, for all α 6= 0 in C, there exists z ∈ Bv(0, 1) such that
z /∈ αBw(0, 1). So let α 6= 0 in C be given. Let z = 2αd. Then z ∈ Bv(0, 1), but
z /∈ αBw(0, 1) since ‖z‖1 = 2|α|o > |α|o. □
Remark 2.36. Similarly, we can show that none of the balls Bv(z0, r), Bv[z0, r],
Bo(z0, t), or Bo[z0, t] are bounded in (C, τw) for all z0 ∈ C, r > 0 in R and t > 0
in R.
Corollary 2.37. None of the balls Bv(z0, r), Bv[z0, r], Bo(z0, t), or Bo[z0, t] are
compact in (C, τw) for all z0 ∈ C, r > 0 in R and t > 0 in R.
Proposition 2.38. For all r > 0 in R, Bw[0, r] is closed but not bounded and
hence not compact in (C, τw). Thus, (C, τw) is neither locally bounded nor locally
compact.
Proof. Let ξ ∈ C \Bw[0, r]. Then ‖ξ‖1/r > r. Let

t = min{‖ξ‖1/r − r, r}.
Then t > 0 in R. We show that Bw(ξ, t) ⊂ C \Bw[0, r]: Let z ∈ Bw(ξ, t) be given.
Then ‖ξ − z‖1/t = ‖z − ξ‖1/t < t. It follows that

‖z‖1/r ≥ ‖ξ‖1/r − ‖ξ − z‖1/r
≥ ‖ξ‖1/r − ‖ξ − z‖1/t
> ‖ξ‖1/r − t

≥ ‖ξ‖1/r − (‖ξ‖1/r − r) = r.

This shows that z /∈ Bw[0, r] for all z ∈ Bw(ξ, t), and hence Bw(ξ, t) ⊂ C\Bw[0, r].
It follows that C\Bw[0, r] is open in (C, τw), and hence Bw[0, r] is closed in (C, τw).

To show that Bw[0, r] is not bounded in (C, τw), it suffices to show that there
exists a zero-neighborhood in (C, τw), which does not absorb Bw[0, r]. Let q ∈ Q
be such that

0 < q < min

{
r

2
,
1

2r

}
.

We show that Bw[0, r] is not absorbed by Bw(0, q). Let α 6= 0 in C be given. Let
z = 2αqd1/q. Then

‖z‖1/q = 2|α|oq > |α|oq, and hence z /∈ αBw(0, q).
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However, since 0 < q < r/2, it follows that 1/q > 2/r > 1/r, and hence
‖z‖1/r = 0 < r, so z ∈ Bw[0, r].

□
Corollary 2.39. For all r > 0 in R, Bw(0, r) is not bounded in (C, τw).
Remark 2.40. Since every p-normed space (with 0 < p ≤ 1) is locally bounded,
we infer that there can be no p-norm (with 0 < p ≤ 1) that induces the topology
τw on C.

Using the results of Corollary 2.37 and Proposition 2.38 (or Corollary 2.39),
we readily obtain the following result.
Corollary 2.41. Let A be compact in (C, τw). Then A has an empty interior in
both (C, τv) and (C, τw); that is,

intv(A) := {a ∈ A : there exists r > 0 in R 3 Bv(a, r) ⊂ A} = ∅, and
intw(A) := {a ∈ A : there exists r > 0 in R 3 Bw(a, r) ⊂ A} = ∅.

Proposition 2.42. Let A ⊂ C be bounded in (C, τw). Then there exists M > 0
in R such that ‖z‖1/M ≤ M for all z ∈ A; that is, A ⊂ Bw[0,M ].
Proof. Since A is bounded in (C, τw), A is absorbed by every zero-neighborhood
in (C, τw). In particular, A is absorbed by Bw(0, r) for some fixed r > 0 in R.
Thus, there exists α > 1 in R such that A ⊂ αBw(0, r). Hence ‖z‖1/r < αr for
all z ∈ A. Let M = αr. Then M ∈ R and M > r > 0. Thus, 0 < 1/M < 1/r.
Moreover, for all z ∈ A, we have

‖z‖1/M ≤ ‖z‖1/r < αr = M.

Hence A ⊂ Bw[0,M ]. □
Remark 2.43. Proposition 2.38 shows that the converse of Proposition 2.42 is not
true.
Remark 2.44. Convergence of sequences and series in (R, τv), (R, τw), (C, τv),
and (C, τw) has been studied in detail in [3, 14, 18]. In particular, it is shown
that (R, τv) and (C, τv) are Cauchy complete, but (R, τw) and (C, τw) are not.
For example, the sequence (an)n∈N, where an =

∑n
j=1 d

−j/j for each n ∈ N, is
Cauchy in (R, τw) (resp., in (C, τw)), but it does not converge in (R, τw) (resp.,
in (C, τw)).

3. Analysis on C

In this section, we will define the continuity and differentiability of a function
from A ⊂ C → C at a point z0 ∈ A as well as on A. Then we will show that
some basic results from classical complex analysis work in C as well but other
fundamental results do not work due to the total disconnectedness of (C, τv).
Definition 3.1. Let A ⊂ C, let f : A → C, and let z0 ∈ A be given. Then we say
that f is continuous at z0 if for all ϵ > 0 in R, there exists δ > 0 in R such that

z ∈ A and |z − z0| < δ ⇒ |f(z)− f(z0)| < ϵ.
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Moreover, we say that f is continuous on A if f is continuous at every z ∈ A.

Definition 3.2. Let A ⊂ C be open, let f : A → C, and let z0 ∈ A be given.
Then we say that f is differentiable at z0 if there exists a number ξ ∈ C such that
for all ϵ > 0 in R, there exists δ > 0 in R such that

z ∈ A and 0 < |z − z0| < δ ⇒
∣∣∣∣f(z)− f(z0)

z − z0
− ξ

∣∣∣∣ < ϵ.

If this is the case, we call the number ξ the derivative of f at z0 and denote it by
f ′(z0).

Moreover, we say that f is differentiable on A if f is differentiable at every
z ∈ A.

In the following, we will list basic results and rules about continuous and dif-
ferentiable functions at a point or on a set in C. We omit the proofs here as they
are identical to those of the respective results in C or in any other metric space.

• Let A ⊂ C, let f : A → C and let z0 ∈ A be given. Then f is continuous at
z0 if and only if for any sequence (ξn) in A that converges to z0 in (C, τv),
the sequence (f(ξn)) converges to f(z0) in (C, τv).

• Let A ⊂ C, let f, g : A → C be continuous at z0 ∈ A (resp., on A), and let
α ∈ C be given. Then f + αg and f · g are continuous at z0 (resp., on A).

• Let A,B ⊂ C, let f : A → B be continuous at z0 ∈ A (resp., on A),
and let g : B → C be continuous at f(z0) (resp., on B). Then g ◦ f is
continuous at z0 (resp., on A).

• Let A ⊂ C be open and let f : A → C be differentiable at z0 ∈ A (resp.,
on A). Then f is continuous at z0 (resp., on A).

• Let A ⊂ C be open, let f, g : A → C be differentiable at z0 ∈ A (resp., on
A), and let α ∈ C be given. Then f + αg is differentiable at z0 (resp., on
A) with derivative

(f + αg)′(z0) = f ′(z0) + αg′(z0)

(resp., (f + αg)′(z) = f ′(z) + αg′(z) for all z ∈ A).

• (Product rule) Let A ⊂ C be open and let f, g : A → C be differentiable
at z0 ∈ A (resp., on A). Then f · g is differentiable at z0 (resp., on A)
with derivative

(f · g)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0)

(resp., (f · g)′(z) = f ′(z)g(z) + f(z)g′(z) for all z ∈ A).

• (Chain rule) Let A,B ⊂ C be open, let f : A → B be differentiable at
z0 ∈ A (resp., on A), and let g : B → C be differentiable at f(z0) (resp.,
on B). Then g ◦ f is differentiable at z0 (resp., on A) with derivative

(g ◦ f)′(z0) = g′(f(z0))f
′(z0),

(resp., (g ◦ f)′(z) = g′(f(z))f ′(z) for all z ∈ A).
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• (Quotient rule) Let A ⊂ C be open, let f, g : A → C be differentiable at
z0 ∈ A, and let g(z0) 6= 0. Then f/g is differentiable at z0 with derivative(

f

g

)′

(z0) =
f ′(z0)g(z0)− f(z0)g

′(z0)

g2(z0)
.

• (Differentiability and the Cauchy–Riemann equations) Let A ⊂ C be open,
let f : A → C, and let z0 ∈ A be given. Let B = {(x, y) ∈ R2 : x+iy ∈ A},
and write f(z) = U(x, y)+iV (x, y) for z = x+iy ∈ A with U, V : B → R.
If f is differentiable at z0 = x0 + iy0 in A, then the partial derivatives of
U(x, y) and V (x, y) exist at (x0, y0), and they satisfy the Cauchy–Riemann
equations

∂U

∂x
(x0, y0) =

∂V

∂y
(x0, y0) and ∂U

∂y
(x0, y0) = −∂V

∂x
(x0, y0).

Conversely, if the Cauchy–Riemann equations hold and if U and V
are differentiable as functions from B ⊂ R2 to R at (x0, y0), then f is
differentiable at z0 with derivative

f ′(z0) =
∂U

∂x
(x0, y0) + i

∂V

∂x
(x0, y0)

=
∂V

∂y
(x0, y0)− i

∂U

∂y
(x0, y0).

In the following, we give an example of a function that is single-valued and
infinitely often differentiable on the unit ball Bv[0, 1] of (C, τv) but whose Taylor
series around any point ξ ∈ Bv[0, 1] does not converge to the function at any
z 6= ξ. Then we give another example of a function that is single-valued and
differentiable on Bv[0, 1] but not twice differentiable at 0. These two examples
are counterintuitive to what we are used to in classical complex analysis and
indicate that more work needs to be done in order to develop a complete analysis
on the complex Levi-Civita field C. Ongoing research aims at overcoming the
difficulties arising from the total disconnectedness of (C, τv) and developing a
meaningful analysis theory on the field. In particular, we will work on developing
a Cauchy-like integration theory on C and then study under what conditions
we can prove analogues of the core results of classical complex analysis such as
the Cauchy Integral Theorem, the Cauchy Integral Formula, and the Residue
Theorem.

Example 3.3. Let g : Bv[0, 1] → C be given by

g(ξ)[q] = ξ[q/3] for all q ≥ 0 in Q.

Thus, given ξ ∈ Bv[0, 1], we can write ξ = a0 +
∑∞

j=1 ajd
qj with aj ∈ C for j ≥ 0

and 0 < q1 < q2 < · · · ; then g (ξ) = a0 +
∑∞

j=1 ajd
3qj .

We show first that g is (uniformly) differentiable on Bv[0, 1] with g′(ξ) = 0 for
all ξ ∈ Bv[0, 1]. So let ϵ > 0 in R be given. Let

δ = min{ϵ, 1}.



88 K. SHAMSEDDINE

Then δ > 0 in R. Now let z, ξ ∈ Bv[0, 1] be such that 0 < |z − ξ| < δ. Then
g(z)− g(ξ) = g(z − ξ) ∼ (z − ξ)3, and hence |g(z)− g(ξ)| = |z − ξ|3.

It follows that∣∣∣∣g(z)− g(ξ)

z − ξ
− 0

∣∣∣∣ = |g(z)− g(ξ)|
|z − ξ|

= |z − ξ|2 < δ2 < δ ≤ ϵ.

However, for all ξ ∈ Bv[0, 1] and for z 6= ξ in Bv[0, 1], we have

g(z) 6=
∞∑
n=0

g(n)(ξ)

n!
(z − ξ)n = g(ξ).

Example 3.4. Let f : Bv[0, 1] → C be given by

f(z) =

{
g(z)
z

if z 6= 0
0 if z = 0,

where g is the function of Example 3.3 above. Then

f ′(0) = lim
h→0

f(h)

h
= lim

h→0

g(h)

h2
= 0 since g(h)

h2
∼ h for 0 < |h| < 1,

and
f ′(z) = −g(z)

z2
for z 6= 0,

using the quotient rule and the fact that g′(z) = 0.
Even though f is single-valued and (continuously) differentiable on Bv[0, 1], f

is not twice differentiable at 0 since

lim
h→0

f ′(h)− f ′(0)

h
= − lim

h→0

g(h)

h3

does not exist. In fact, for h =
∑∞

j=1 ajd
qj with a1 6= 0 and 0 < q1 < q2 < · · ·

(0 < |h| < 1),
f ′(h)− f ′(0)

h
= −g(h)

h3
= − a1d

3q1 + a2d
3q2 + · · ·

(a1dq1 + a2dq2 + · · · )3
≈ − 1

a21

has no limit as h → 0 (that is, as q1 → ∞).
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