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SHARP BOUNDS FOR THE SECOND HANKEL
DETERMINANT OF LOGARITHMIC COEFFICIENTS

FOR PARABOLIC STARLIKE AND UNIFORMLY CONVEX
FUNCTIONS OF ORDER α
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Communicated by S. Hejazian

Abstract. Let A denote the class of analytic functions f in the open unit
disk U normalized by f(0) = f ′(0) − 1 = 0, and let S be the class of all
functions f ∈ A that are univalent in U. For a function f ∈ S, the logarithmic
coefficients δn (n = 1, 2, 3, . . .) are defined by

log
f(z)

z
= 2

∞∑
n=1

δnz
n (z ∈ U) .

For 0 ≤ α < 1, let Sp (α) and UCV (α) denote the classes of functions f ∈ A
such that ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < (1− 2α) + ℜ
(
zf ′(z)

f(z)

)
(z ∈ U)

and ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < 2 (1− α) + ℜ
(
zf ′′(z)

f ′(z)

)
(z ∈ U) ,

respectively. In the present paper, we determine the sharp upper bound for
|δn| (n = 1, 2, 3, . . .) of functions f belonging to the classes Sp (α). Also, we
obtain upper bounds for |δn| (n = 1, 2, 3) of functions belonging to the class
UCV (α).
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1. Introduction

Let R = (−∞,∞) be the set of real numbers, let C be the set of complex
numbers, and let

N := {1, 2, 3, . . .} = N0\ {0}
be the set of positive integers.

Assume that H is the class of analytic functions in the open unit disc
U := {z ∈ C : |z| < 1} ,

and let the class P be defined by
P = {p ∈ H : p(0) = 1 and ℜ (p(z)) > 0 (z ∈ U)} .

For two functions f, g ∈ H, we say that the function f is subordinate to g in
U and write

f (z) ≺ g (z) (z ∈ U)
if there exists a Schwarz function

ω ∈ Ω := {ω ∈ H : ω(0) = 0 and |ω (z)| < 1 (z ∈ U)}

such that
f (z) = g (ω (z)) (z ∈ U) .

Indeed, it is known that
f (z) ≺ g (z) (z ∈ U) ⇒ f (0) = g (0) and f (U) ⊂ g (U) .

Furthermore, if the function g is univalent in U, then we have the following
equivalence relation:

f (z) ≺ g (z) (z ∈ U) ⇔ f (0) = g (0) and f (U) ⊂ g (U) .

Let A denote the subclass of H consisting of functions f normalized by
f(0) = f ′(0)− 1 = 0.

Each function f ∈ A can be expressed as

f(z) = z +
∞∑
n=2

anz
n (z ∈ U) . (1.1)

We also denote by S the class of all functions in the normalized analytic function
class A that are univalent in U.

Definition 1.1. A function f ∈ A is said to be starlike of order α (0 ≤ α < 1)
if it satisfies the condition

ℜ
(
zf ′(z)

f(z)

)
> α (z ∈ U) .

We say that f is in the class S∗ (α) for such functions.

In particular, we set S∗ (0) = S∗ for the class of starlike functions in the open
unit disk U. Recall that S∗ (α) ⊂ S∗ ⊂ S.
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Definition 1.2 ([5]). A function f ∈ A is said to be parabolic starlike of order
α (0 ≤ α < 1) if and only if∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < (1− 2α) + ℜ
(
zf ′(z)

f(z)

)
(z ∈ U) .

We say that f is in the class Sp (α) for such functions.
Equivalently,

f(z) ∈ Sp (α) ⇔
zf ′(z)

f(z)
∈ Ωα (z ∈ U) ,

where Ωα denotes the parabolic region in the right half-plane
Ωα =

{
w = u+ iv : v2 < 4 (1− α) (u− α)

}
= {w : |w − 1| < (1− 2α) + ℜ (w)} .

From its definition, it is clear that the class Sp (α) is contained in the class S∗ (α) .

Definition 1.3 ([15]). A function f ∈ A is said to be uniformly convex of order
α (0 ≤ α < 1) if and only if∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < 2 (1− α) + ℜ
(
zf ′′(z)

f ′(z)

)
(z ∈ U) .

We say that f is in the class UCV (α) for such functions.
Lee [15] showed that

f ∈ UCV (α) ⇔ zf ′ ∈ Sp (α) . (1.2)
In particular, we set Sp (1/2) = Sp for the class of parabolic starlike functions

introduced by Ronning [23], and UCV (1/2) = UCV for the class of uniformly
convex functions.

Ali and Singh [5] showed that the normalized Riemann mapping function qα(z)
from the open unit disk U onto Ωα is given by

qα(z) = 1 +
4 (1− α)

π2

[
log

1 +
√
z

1−
√
z

]2
:= 1 +

∞∑
n=1

Dnz
n (z ∈ U) . (1.3)

The branch of
√
z is chosen such that ℑ

√
z ≥ 0. Using the expansion of

log (1 + z) =
∞∑
n=1

(−1)n

n
zn (z ∈ U) ,

we get [
log

1 +
√
z

1−
√
z

]2
= 4z +

8

3
z2 +

92

45
z3 + · · · . (1.4)

From the above equalities (1.3) and (1.4), we obtain

qα(z) = 1+
16 (1− α)

π2
z+

32 (1− α)

3π2
z2+

368 (1− α)

45π2
z3+· · · = 1+

∞∑
n=1

Dnz
n, (1.5)

where

Dn =
16 (1− α)

nπ2

n−1∑
j=0

1

2j + 1
(n ∈ N) . (1.6)



54 S. BULUT

Lemma 1.4 ([16]). If f ∈ Sp (α) , then
zf ′(z)

f(z)
≺ qα(z) (z ∈ U) ,

where qα is given in (1.3) .

For a function f ∈ S, given by (1.1) , the logarithmic coefficients δn (n ∈ N)
are defined by

Ff (z) := log
f(z)

z
= 2

∞∑
n=1

δnz
n (z ∈ U) , (1.7)

and play a central role in the theory of univalent functions. Note that, by differ-
entiating (1.7) and equating coefficients, we have

δ1 =
1

2
a2, (1.8)

δ2 =
1

2

(
a3 −

1

2
a22

)
, (1.9)

δ3 =
1

2

(
a4 − a2a3 +

1

3
a32

)
. (1.10)

For the whole class S, the sharp estimates of single logarithmic coefficients are
known only for δ1 and δ2, namely,

|δ1| ≤ 1, |δ2| ≤
1

2
+

1

e2
= 0, 635 . . .

and are unknown for n ≥ 3.
So it is natural to ask the sharp estimates of |δn| (n ∈ N) for functions belonging

to the subclasses of univalent function class S. One of the main purpose of this
paper is to determine the sharp upper bound for |δn| (n ∈ N) of the function f
belonging to the class Sp (α) . Some recent works on logarithmic coefficients can
be found in [2, 4, 17].

On the other hand, one of the important tools in the theory of univalent func-
tions are the Hankel determinants, which are used, for example, in showing that
a function of bounded characteristic in U, that is, a function that is a ratio of
two bounded analytic functions, with its Laurent series around the origin having
integral coefficients, is rational [8].

For integers n, q ∈ N, Noonan and Thomas [19] defined the qth Hankel deter-
minant Hq,n(f) of f ∈ A of the form (1.1) by

Hq,n(f) =

∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
... ... . . . ...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣ (a1 = 1) .

Note that

H2,1(f) =

∣∣∣∣a1 a2
a2 a3

∣∣∣∣ and H2,2(f) =

∣∣∣∣a2 a3
a3 a4

∣∣∣∣ ,
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where the Hankel determinants H2,1(f) = a3−a22 and H2,2(f) = a2a4−a23 are well
known as Fekete-Szegö and the second Hankel determinant functionals, respec-
tively. Furthermore, Fekete and Szegö [12] introduced the generalized functional
a3 − λa22, where λ is some real number. Problems in this field have also been
argued by several authors (see, for example, [1, 6, 7, 10, 13, 18, 21]).

Very recently, Kowalczyk and Lecko [14] introduced the Hankel determinant
Hq,n

(
Ff

2

)
, which entries are logarithmic coefficients of f , that is,

Hq,n

(
Ff

2

)
=

∣∣∣∣∣∣∣∣
δn δn+1 . . . δn+q−1

δn+1 δn+2 . . . δn+q
... ... . . . ...

δn+q−1 δn+q . . . δn+2q−2

∣∣∣∣∣∣∣∣ .
The main purpose of this paper is to investigate the upper bound of

H2,1

(
Ff

2

)
= δ1δ3 − δ22

and of logarithmic coefficients δn for functions belonging to the classes Sp (α) and
UCV (α) .

2. Preliminary lemmas

Throughout this paper, we assume that
p (z) = 1 + c1z + c2z

2 + c3z
3 + · · · (z ∈ U) . (2.1)

To prove our main results, we need the following lemmas.

Lemma 2.1 ([20]). Let p ∈ P be given by (2.1) . Then
|cn| ≤ 2 (n ∈ N) .

Lemma 2.2 ([21]). Let p ∈ P be given by (2.1) . Then for any complex number ν∣∣c2 − νc21
∣∣ ≤ 2max {1, |2ν − 1|} ,

and the result is sharp for the functions given by

p (z) =
1 + z2

1− z2
and p (z) =

1 + z

1− z
.

Lemma 2.3 ([16]). Let p ∈ P be given by (2.1) . Then

∣∣c2 − νc21
∣∣ ≤

 −4ν + 2, ν ≤ 0,
2, 0 ≤ ν ≤ 1,
4ν − 2, ν ≥ 1.

When ν < 0 or ν > 1, the equality holds if and only if p (z) is 1+z
1−z

or one of its
rotations. If 0 < ν < 1, then the equality holds if and only if p (z) is 1+z2

1−z2
or one

of its rotations. If ν = 0, then the equality holds if and only if

p (z) =

(
1

2
+

1

2
η

)
1 + z

1− z
+

(
1

2
− 1

2
η

)
1− z

1 + z
(0 ≤ η ≤ 1)



56 S. BULUT

or one of its rotations. If ν = 1, then the equality holds if and only if p (z) is the
reciprocal of one of the functions such that the equality holds in the case when
ν = 0.

Although the above upper bound is sharp, in the case when 0 < ν < 1, it can be
further improved as follows:∣∣c2 − νc21

∣∣+ ν |c1|2 ≤ 2

(
0 < ν ≤ 1

2

)
and ∣∣c2 − νc21

∣∣+ (1− ν) |c1|2 ≤ 2

(
1

2
< ν ≤ 1

)
.

Lemma 2.4 ([9]). If p ∈ P is of the form (2.1) with c1 ≥ 0, then
c1 = 2ζ1,
c2 = 2ζ21 + 2 (1− ζ21 ) ζ2,

c3 = 2ζ31 + 4 (1− ζ21 ) ζ1ζ2 − 2 (1− ζ21 ) ζ1ζ
2
2 + 2 (1− ζ21 )

(
1− |ζ2|2

)
ζ3

(2.2)

for some ζ1 ∈ [0, 1] and ζ2, ζ3 ∈ U = {z ∈ C : |z| ≤ 1} .
For ζ1 ∈ U and ζ2 ∈ ∂U = {z ∈ C : |z| = 1}, there is a unique function p ∈ P

with c1 and c2 as in (2.2), namely,

p (z) =
1 +

(
ζ1ζ2 + ζ1

)
z + ζ2z

2

1 +
(
ζ1ζ2 − ζ1

)
z − ζ2z2

(z ∈ U) .

Lemma 2.5 ([22]). Let the function h given by

h(z) = 1 +
∞∑
k=1

hkz
k (z ∈ U)

be subordinate to the function H given by

H (z) = 1 +
∞∑
k=1

Hkz
k (z ∈ U) .

If H(z) is univalent in U and H(U) is convex, then

|hk| ≤ |H1| (k ∈ N) .

Lemma 2.6 ([10]). Given real numbers A,B,C, let

Y (A,B,C) := max
z∈U

(∣∣A+Bz + Cz2
∣∣+ 1− |z|2

)
.

I. If AC ≥ 0, then

Y (A,B,C) =


|A|+ |B|+ |C| , |B| ≥ 2 (1− |C|) ,

1 + |A|+ B2

4(1−|C|) , |B| < 2 (1− |C|) .
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II. If AC < 0, then

Y (A,B,C) =


1− |A|+ B2

4(1−|C|) , −4AC (C−2 − 1) ≤ B2 ∧ |B| < 2 (1− |C|) ,

1 + |A|+ B2

4(1+|C|) , B2 < min
{
4 (1 + |C|)2 , −4AC (C−2 − 1)

}
,

R (A,B,C) , otherwise,
where

R (A,B,C) =



|A|+ |B| − |C| , |C| (|B|+ 4 |A|) ≤ |AB| ,

− |A|+ |B|+ |C| , |AB| ≤ |C| (|B| − 4 |A|) ,

(|A|+ |C|)
√
1− B2

4AC
otherwise.

Lemma 2.7 ([3]). Let φ be an analytic univalent function in the unit disk U
satisfying φ (0) = 1 such that it has series expansion of the form

φ (z) = 1 +B1z +B2z
2 +B3z

3 + · · · , B1 ̸= 0.

If φ is convex and the function f given by (1.1) satisfies the subordination
zf ′(z)

f(z)
≺ φ (z) (z ∈ U) ,

then the logarithmic coefficients δn of f satisfy the inequality

|δn| ≤
|B1|
2n

(n ∈ N) .

3. The class Sp (α)

3.1. The logarithmic coefficients.
Theorem 3.1. Let f ∈ Sp (α) (0 ≤ α < 1) be given by (1.1) and let the coefficients
of log (f(z)/z) be given by (1.7) . Then

|δn| ≤
8 (1− α)

nπ2
(n ∈ N) . (3.1)

For each n ∈ N, there exist a function fn given by
zf ′

n(z)

fn(z)
= qα(z

n) (n ∈ N)

such that the each equality in (3.1) is sharp.

Proof. The proof is easily obtained from Lemma 2.7. □
Corollary 3.2. Let f ∈ Sp be given by (1.1) and let the coefficients of log (f(z)/z)
be given by (1.7) . Then

|δn| ≤
4

nπ2
(n ∈ N) .

The result is sharp.
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Theorem 3.3. Let f ∈ Sp (α) (0 ≤ α < 1) be given by (1.1) and let the coefficients
of log (f(z)/z) be given by (1.7) . Then

∣∣δ2 − µδ21
∣∣ ≤



8(1−α)
π2

(
1
3
− 8(1−α)

π2 µ
)
, µ ≤ − π2

48(1−α)
,

4(1−α)
π2 , − π2

48(1−α)
≤ µ ≤ 5π2

48(1−α)
,

−8(1−α)
π2

(
1
3
− 8(1−α)

π2 µ
)
, µ ≥ 5π2

48(1−α)
.

If − π2

48(1−α)
≤ µ ≤ π2

24(1−α)
, then∣∣δ2 − µδ21
∣∣+ (µ+

π2

48 (1− α)

)
|δ1|2 ≤

4 (1− α)

π2
.

Furthermore, if π2

24(1−α)
≤ µ ≤ 5π2

48(1−α)
, then∣∣δ2 − µδ21

∣∣+ ( 5π2

48 (1− α)
− µ

)
|δ1|2 ≤

4 (1− α)

π2
.

Each of these results is sharp.

Proof. Let f ∈ Sp (α). By the subordination principle and Lemma 1.4, there
exists the Schwarz’s function u (z) such that

F (z) :=
zf ′(z)

f(z)
= qα(u(z)) (z ∈ U) . (3.2)

If
F (z) = 1 + b1z + b2z

2 + b3z
3 + · · · ,

then the first equality in (3.2) implies that

a2 = b1, a3 =
1

2

(
b2 + b21

)
, a4 =

1

3

(
b3 +

3

2
b1b2 +

1

2
b31

)
. (3.3)

Since qα is univalent in the open unit disk U, by (3.2) , the function

p(z) :=
1 + u(z)

1− u(z)
=

1 + q−1
α (F (z))

1− q−1
α (F (z))

= 1 + c1z + c2z
2 + c3z

3 + · · · (3.4)

belongs to the class P . Solving u(z) in terms of p(z) in (3.4), we obtain

u(z) =
1

2

[
c1z +

(
c2 −

c21
2

)
z2 +

(
c3 − c1c2 +

c31
4

)
z3 + · · ·

]
. (3.5)

In view of (3.2) , using (3.5) in (1.5), we find
1 + b1z + b2z

2 + b3z
3 + · · ·

= 1 +
1

2
D1c1z +

{
1

2
D1

(
c2 −

c21
2

)
+

1

4
D2c

2
1

}
z2

+

{
1

2
D1

(
c3 − c1c2 +

c31
4

)
+

1

2
D2c1

(
c2 −

c21
2

)
+

1

8
D3c

3
1

}
z3 + · · · .
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Equating the coefficients in the above equalities and considering (1.6) , we have

b1 =
8 (1− α)

π2
c1, b2 =

8 (1− α)

π2

(
c2 −

c21
6

)
, (3.6)

and
b3 =

8 (1− α)

π2

(
c3 −

1

3
c1c2 +

2

45
c31

)
. (3.7)

Using (3.3) in (3.6) and (3.7), we get

a2 =
8 (1− α)

π2
c1, (3.8)

a3 =
8 (1− α)

2π2

[
c2 −

(
1

6
− 8 (1− α)

π2

)
c21

]
, (3.9)

a4 =
8 (1− α)

3π2

[
c3 −

(
1

3
− 12 (1− α)

π2

)
c1c2

+

(
2

45
− 2 (1− α)

π2
+

32 (1− α)2

π4

)
c31

]
. (3.10)

For δ1, from (1.8) and (3.8), we have

δ1 =
4 (1− α)

π2
c1, (3.11)

and for δ2, substituting for a2 and a3 from (3.8) and (3.9) in (1.9), we obtain

δ2 =
2 (1− α)

π2

(
c2 −

1

6
c21

)
. (3.12)

Furthermore, from (1.8) and (3.8)− (3.10), we get

δ3 =
4 (1− α)

3π2

(
c3 −

1

3
c1c2 +

2

45
c31

)
. (3.13)

Then from (3.11) and (3.12), we get∣∣δ2 − µδ21
∣∣ = 2 (1− α)

π2

∣∣c2 − νc21
∣∣ , ν =

1

6
+

8 (1− α)

π2
µ.

The assertion of Theorem 3.3 now follows by an application of Lemma 2.3.
To show that the bounds asserted by Theorem 3.3 are sharp, we define the

following functions:
Kn (z) (n = 2, 3, . . .) ,

by
Kn (0) = 0 = K ′

n (0)− 1,

and
zK ′

n (z)

Kn (z)
= qα

(
zn−1

)
,

and the functions Fη (z) and Gη (z) (0 ≤ η ≤ 1) by
Fη (0) = 0 = F ′

η (0)− 1 and Gη (0) = 0 = G′
η (0)− 1,
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zF ′
η (z)

Fη (z)
= qα

(
z (z + η)

1 + ηz

)
,

and
zG′

η (z)

Gη (z)
= qα

(
−z (z + η)

1 + ηz

)
,

respectively. Then, clearly, the functions Kn, Fη, Gη ∈ Sp (α) . We also write
K = K2. If µ < − π2

48(1−α)
or µ > 5π2

48(1−α)
, then the equality of Theorem 3.3 holds if

and only if f is K or one of its rotations. When − π2

48(1−α)
< µ < 5π2

48(1−α)
, then the

equality holds if and only if f is K3 or one of its rotations. If µ = − π2

48(1−α)
, then

the equality holds if and only if f is Fη or one of its rotations. If µ = 5π2

48(1−α)
,

then the equality holds if and only if f is Gη or one of its rotations. □
Corollary 3.4. Let f ∈ Sp be given by (1.1) and let the coefficients of log (f(z)/z)
be given by (1.7) . Then

∣∣δ2 − µδ21
∣∣ ≤


4
π2

(
1
3
− 4

π2µ
)
, µ ≤ −π2

24
,

2
π2 , −π2

24
≤ µ ≤ 5π2

24

− 4
π2

(
1
3
− 4

π2µ
)
, µ ≥ 5π2

24
.

If −π2

24
≤ µ ≤ π2

12
, then ∣∣δ2 − µδ21

∣∣+ (µ+
π2

24

)
|δ1|2 ≤

2

π2
.

Furthermore, if π2

12
≤ µ ≤ 5π2

24
, then∣∣δ2 − µδ21
∣∣+ (5π2

24
− µ

)
|δ1|2 ≤

2

π2
.

Each of these results is sharp.

Theorem 3.5. Let f ∈ Sp (α) be given by (1.1) and let the coefficients of
log (f(z)/z) be given by (1.7) . Then for µ ∈ C and

χ (µ) =
1

3
+

16 (1− α)

π2
µ,

we have

∣∣δ2 − µδ21
∣∣ ≤


8(1−α)
3π4 |24 (1− α)µ− π2| , |χ (µ)− 1| ≥ 1,

4(1−α)
π2 , |χ (µ)− 1| ≤ 1.

Proof. From (1.8), (3.8) and (3.12), we get∣∣δ2 − µδ21
∣∣ = 2 (1− α)

π2

∣∣c2 − νc21
∣∣ , ν =

1

6
+

8 (1− α)

π2
µ

for any µ ∈ C. The desired result is obtained from Lemma 2.2. □
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Corollary 3.6. Let f ∈ Sp be given by (1.1) and let the coefficients of log (f(z)/z)
be given by (1.7) . Then for µ ∈ C and

χ (µ) =
1

3
+

8

π2
µ,

we have ∣∣δ2 − µδ21
∣∣ ≤


4

3π4 |12µ− π2| , |χ (µ)− 1| ≥ 1,

2
π2 , |χ (µ)− 1| ≤ 1.

3.2. Second Hankel determinant.
Theorem 3.7. Let f ∈ Sp (α) (0 ≤ α < 1) be given by (1.1) and let the coefficients
of log (f(z)/z) be given by (1.7) . Then∣∣δ1δ3 − δ22

∣∣ ≤ 16 (1− α)2

π4
.

The inequality is sharp.

Proof. Suppose that f ∈ Sp (α) is given by (1.1) . By using (3.11) − (3.13) and
Lemma 2.4, we obtain

δ1δ3 − δ22 =
4 (1− α)2

π4

[
17

540
c41 −

1

9
c21c2 +

4

3
c1c3 − c22

]
=

16 (1− α)2

3π4

[
32

45
ζ41 +

4

3

(
1− ζ21

)
ζ21ζ2 −

(
1− ζ21

) (
ζ21 + 3

)
ζ22

+4
(
1− ζ21

) (
1− |ζ2|2

)
ζ1ζ3

]
. (3.14)

(a) Firstly suppose that ζ1 = 1. Then by (3.14), we have∣∣δ1δ3 − δ22
∣∣ = 512

135π4
(1− α)2 .

(b) Now, suppose that ζ1 = 0. Then by (3.14),∣∣δ1δ3 − δ22
∣∣ = 16 (1− α)2

π4
|ζ2|2 ≤

16 (1− α)2

π4
.

(c) Finally, suppose that ζ1 ∈ (0, 1) . By the fact that |ζ3| ≤ 1, from (3.14), we
get ∣∣δ1δ3 − δ22

∣∣ ≤ 64 (1− α)2

3π4
ζ1
(
1− ζ21

)
×
[∣∣∣∣ 8ζ31
45 (1− ζ21 )

+
ζ1ζ2
3

− (ζ21 + 3) ζ22
4ζ1

∣∣∣∣+ 1− |ζ2|2
]

=
64 (1− α)2

3π4
ζ1
(
1− ζ21

) [∣∣A+Bζ2 + Cζ22
∣∣+ 1− |ζ2|2

]
,

where
A :=

8ζ31
45 (1− ζ21 )

, B :=
ζ1
3
, C := −ζ

2
1 + 3

4ζ1
.

Since AC < 0, we apply Lemma 2.6 only for the case II.
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(c.1) The inequality

−4AC

(
1

C2
− 1

)
−B2 =

8ζ21 (ζ
2
1 + 3)

45 (1− ζ21 )

(
16ζ21

(ζ21 + 3)
2 − 1

)
− ζ21

9
≤ 0

is equivalent to −ζ41 + 30ζ21 − 29 ≤ 0, which evidently holds for ζ1 ∈ (0, 1) .
Moreover, the inequality |B| < 2 (1− |C|) is equivalent to 5

3
ζ21 − 4ζ1 + 3 < 0,

which is false for ζ1 ∈ (0, 1) .
(c.2) Since

4 (1 + |C|)2 = (ζ1 + 1)2 (ζ1 + 3)2

4ζ21
> 0

and
−4AC

(
1

C2
− 1

)
=

8ζ21 (ζ
2
1 − 9)

45 (ζ21 + 3)
< 0,

we see that the inequality

ζ21
9
< min

{
(ζ1 + 1)2 (ζ1 + 3)2

4ζ21
,
8ζ21 (ζ

2
1 − 9)

45 (ζ21 + 3)

}
=

8ζ21 (ζ
2
1 − 9)

45 (ζ21 + 3)

is false for ζ1 ∈ (0, 1) .
(c.3) The inequality

|C| (|B|+ 4 |A|)− |AB| = (ζ21 + 3)

12

(
1 +

32ζ21
15 (1− ζ21 )

)
− 8ζ41

135 (1− ζ21 )
≤ 0

is equivalent to
19ζ41 + 198ζ21 + 135 ≤ 0,

which is false for ζ1 ∈ (0, 1) .
(c.4) We get

|AB| − |C| (|B| − 4 |A|) = 173ζ41 + 378ζ21 − 135

540 (1− ζ21 )
:=

173s2 + 378s− 135

540 (1− s)
,

where s = ζ21 ∈ (0, 1) . The equation 173s2+378s−135 = 0 has a positive unique
root such that

0 < s1 =
−189 + 6

√
1641

173
< 1.

In other words, for ζ∗1 =
√
s1, we have |AB| − |C| (|B| − 4 |A|) = 0. Furthermore,

|AB| ≤ |C| (|B| − 4 |A|) when ζ1 ∈ (0, ζ∗1 ] and |AB| ≥ |C| (|B| − 4 |A|) when
ζ1 ∈ [ζ∗1 , 1) .

• For ζ1 ∈ (0, ζ∗1 ] , we obtain∣∣δ1δ3 − δ22
∣∣ ≤ 64 (1− α)2

3π4
ζ1
(
1− ζ21

)
(− |A|+ |B|+ |C|)

=
16 (1− α)2

135π4

[
−137ζ41 − 30ζ21 + 135

]
=: χ (ζ1) .

Since
χ′ (ζ1) = −64 (1− α)2

135π4
ζ1
[
137ζ21 + 15

]
< 0
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for ζ1 ∈ (0, ζ∗1 ], χ is a decreasing function on (0, ζ∗1 ] . This implies that∣∣δ1δ3 − δ22
∣∣ ≤ χ (0) =

16 (1− α)2

π4
.

• For ζ1 ∈ [ζ∗1 , 1) , we obtain∣∣δ1δ3 − δ22
∣∣ ≤ 64 (1− α)2

3π4
ζ1
(
1− ζ21

)
(|A|+ |C|)

√
1− B2

4AC

=
16 (1− α)2

135π4

[
−13ζ41 − 90ζ21 + 135

]√ 3ζ21 + 29

8 (ζ21 + 3)

=: ψ (ζ1) .

Since

ψ′ (ζ1) =− 16 (1− α)2

135π4
ζ1

×

[
2
(
13ζ21 + 45

)√ 3ζ21 + 29

2 (ζ21 + 3)
+ 5

−13ζ41 − 90ζ21 + 135

(ζ21 + 3)
2

√
2 (ζ21 + 3)

3ζ21 + 29

]
< 0

for ζ1 ∈ [ζ∗1 , 1), ψ is a decreasing function on [ζ∗1 , 1) . This implies that∣∣δ1δ3 − δ22
∣∣ ≤ ψ (ζ1) ≤ ψ (ζ∗1 ) = χ (ζ∗1 ) ≤ χ (0) =

16 (1− α)2

π4
.

Summarizing parts (a)-(c), it follows the desired inequality. Equality holds for
the function f ∈ A given by

zf ′(z)

f(z)
= qα(z

2) (z ∈ U)

for which a2 = a4 = 0 and a3 =
8(1−α)

π2 . □

Corollary 3.8. Let f ∈ Sp be given by (1.1) and let the coefficients of log (f(z)/z)
be given by (1.7) . Then we have∣∣δ1δ3 − δ22

∣∣ ≤ 4

π4
.

The inequality is sharp.

3.3. The coefficients of the inverse function. Since univalent functions are
one-to-one, they are invertible and the inverse functions need not to be defined on
the entire unit disk U. In fact, the Koebe one-quarter theorem [11] ensures that
the image of U under every univalent function f ∈ S contains a disk of radius
1/4. Thus every function f ∈ A has an inverse f−1, which is defined by

f−1 (f (z)) = z (z ∈ U)

and
f
(
f−1 (w)

)
= w

(
|w| < r0 (f) ; r0 (f) ≥

1

4

)
.
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In fact, for a function f ∈ A given by (1.1) the inverse function f−1 is given by

f−1 (w) = w − a2w
2 +

(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · ·

=: w +
∞∑
n=2

Anw
n. (3.15)

Theorem 3.9. Let f ∈ Sp (α) (0 ≤ α < 1) be given by (1.1) , and let f−1 be the
inverse function of f defined by (3.15) . Then

|A2| ≤
16 (1− α)

π2
,

|A3| ≤


16(1−α)

3π4 [72 (1− α)− π2] , 0 ≤ α ≤ 1− 5π2

144
,

8(1−α)
π2 , 1− 5π2

144
≤ α < 1,

and for λ ∈ C

∣∣A3 − λA2
2

∣∣ ≤


16(1−α)
3π4 |48 (1− α)λ− 72 (1− α) + π2| , |h (λ)− 1| ≥ 1,

8(1−α)
π2 , |h (λ)− 1| ≤ 1,

where
h (λ) =

1

3
+

48 (1− α)

π2
− λ

32 (1− α)

π2
.

Proof. Let the function f ∈ A given by (1.1) be in the class Sp (α) , and let f−1

be the inverse function of f defined by (3.15) . Then using (3.8)-(3.12), we obtain

A2 = −a2 = −8 (1− α)

π2
c1,

A3 = 2a22 − a3 =

(
96 (1− α)2

π4
+

2 (1− α)

3π2

)
c21 −

4 (1− α)

π2
c2

= −4 (1− α)

π2

[
c2 −

(
1

6
+

24 (1− α)

π2

)
c21

]
,

and

A3 − λA2
2 = −4 (1− α)

π2

[
c2 −

(
1

6
+

24 (1− α)

π2
+ λ

16 (1− α)

π2

)
c21

]
.

The inequality for |A2| is obtained by the means of Lemma 2.1. An application
of Lemma 2.3 gives the inequality for |A3| . On the other hand, we find the upper
bound on |A3 − λA2

2| from Lemma 2.2. □

Corollary 3.10. Let f ∈ Sp be given by (1.1) , and let f−1 be the inverse function
of f defined by (3.15) . Then

|A2| ≤
8

π2
, |A3| ≤

8

3π4

(
36− π2

)
,
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and for λ ∈ C,

∣∣A3 − λA2
2

∣∣ ≤


8
3π4 |24λ− 36 + π2| , |h (λ)− 1| ≥ 1,

4
π2 , |h (λ)− 1| ≤ 1,

where
h (λ) =

1

3
+

24

π2
− λ

16

π2
.

4. The class UCV (α)

4.1. The logarithmic coefficients.

Theorem 4.1. Let f ∈ UCV (α) (0 ≤ α < 1) be given by (1.1) and let the coeffi-
cients of log (f(z)/z) be given by (1.7) . Then

|δ1| ≤ 4 (1− α)

π2
,

|δ2| ≤


8(1−α)
3π2

(
1
3
+ 2(1−α)

π2

)
, 0 ≤ α ≤ 1− π2

12
,

4(1−α)
3π2 , 1− π2

12
≤ α < 1,

|δ3| ≤ 2 (1− α)

3π2
+

16 (1− α)2

3π4
.

The bounds for |δ1| and |δ2| are sharp.

Proof. If f ∈ UCV (α) , then from (1.2), we know that zf ′ ∈ Sp (α) . Define the
function g by

g(z) = zf ′(z) = z +
∞∑
n=2

dnz
n (z ∈ U) , (4.1)

and consider the logarithmic coefficients γn (n ∈ N) defined by

Fg(z) := log
g(z)

z
= 2

∞∑
n=1

γnz
n (z ∈ U) . (4.2)

Therefore
γ1 =

1

2
d2, (4.3)

γ2 =
1

2

(
d3 −

1

2
d22

)
, (4.4)

γ3 =
1

2

(
d4 − d2d3 +

1

3
d32

)
. (4.5)

By equating the coefficients of zn reciprocally in (4.1), we get nan = dn for all
n ∈ N. On the other hand, since g = zf ′ ∈ Sp (α) , considering the logarithmic
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coefficients γn given by (4.2) and using (1.8)− (1.10) , the logarithmic coefficients
of the function f ∈ UCV (α) are obtained equal to δ1 =

1
2
γ1,

δ2 =
1
3

(
γ2 +

1
4
γ21
)
,

δ3 =
1
4

(
γ3 +

2
3
γ1γ2

)
.

(4.6)

By letting n = 1 in Theorem 3.1, we obtain

|δ1| =
1

2
|γ1| ≤

4 (1− α)

π2
.

Next, the upper bound of |δ2| is obtained by Theorem 3.3 for µ = −1/4. So we
get

|δ2| =
1

3

∣∣∣∣γ2 + 1

4
γ21

∣∣∣∣ ≤


8(1−α)
3π2

(
1
3
+ 2(1−α)

π2

)
, 0 ≤ α ≤ 1− π2

12
,

4(1−α)
3π2 , 1− π2

12
≤ α < 1.

Finally, for |δ3| ,

|δ3| =
1

4

∣∣∣∣γ3 + 2

3
γ1γ2

∣∣∣∣
≤ 1

4

[
|γ3|+

2

3
|γ1| |γ2|

]
≤ 2 (1− α)

3π2
+

16 (1− α)2

3π4
.

□

Corollary 4.2. Let f ∈ UCV be given by (1.1) and let the coefficients of
log (f(z)/z) be given by (1.7) . Then

|δ1| ≤
2

π2
, |δ2| ≤

2

3π2
, |δ3| ≤

1

3π2
+

4

3π4
.

The bounds for |δ1| and |δ2| are sharp.

Theorem 4.3. Let f ∈ UCV (α) (0 ≤ α < 1) be given by (1.1) and let the coeffi-
cients of log (f(z)/z) be given by (1.7) . Then

∣∣δ2 − λδ21
∣∣ ≤



8(1−α)
3π2

(
1
3
− 2(1−α)(3λ−1)

π2

)
, λ ≤ 1

3
− π2

36(1−α)
,

4(1−α)
3π2 , 1

3
− π2

36(1−α)
≤ λ ≤ 1

3
+ 5π2

36(1−α)
,

−8(1−α)
3π2

(
1
3
− 2(1−α)(3λ−1)

π2

)
, λ ≥ 1

3
+ 5π2

36(1−α)
.

If 1
3
− π2

36(1−α)
≤ λ ≤ 1

3
+ π2

18(1−α)
, then∣∣δ2 − λδ21

∣∣+ (λ+
π2

36 (1− α)
− 1

3

)
|δ1|2 ≤

4 (1− α)

3π2
.
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Furthermore, if 1
3
+ π2

18(1−α)
≤ λ ≤ 1

3
+ 5π2

36(1−α)
, then∣∣δ2 − λδ21

∣∣+ (1

3
+

5π2

36 (1− α)
− λ

)
|δ1|2 ≤

4 (1− α)

3π2
.

Each of these results is sharp.
Proof. From (4.6) , for λ ∈ R, we get

δ2 − λδ21 =
1

3

(
γ2 +

1− 3λ

4
γ21

)
.

This implies that ∣∣δ2 − λδ21
∣∣ = 1

3

∣∣γ2 − µγ21
∣∣ , µ :=

3λ− 1

4
. (4.7)

Using Theorem 3.3, it is obtained that

∣∣δ2 − λδ21
∣∣ ≤



8(1−α)
3π2

(
1
3
− 2(1−α)(3λ−1)

π2

)
, λ ≤ 1

3
− π2

36(1−α)
,

4(1−α)
3π2 , 1

3
− π2

36(1−α)
≤ λ ≤ 1

3
+ 5π2

36(1−α)
,

−8(1−α)
3π2

(
1
3
− 2(1−α)(3λ−1)

π2

)
, λ ≥ 1

3
+ 5π2

36(1−α)
.

□
Corollary 4.4. Let f ∈ UCV be given by (1.1) and let the coefficients of
log (f(z)/z) be given by (1.7) . Then

∣∣δ2 − λδ21
∣∣ ≤


4

3π2

(
1
3
− 3λ−1

π2

)
, λ ≤ 1

3
− π2

18
,

2
3π2 ,

1
3
− π2

18
≤ λ ≤ 1

3
+ 5π2

18
,

− 4
3π2

(
1
3
− 3λ−1

π2

)
, λ ≥ 1

3
+ 5π2

18
.

If 1
3
− π2

18
≤ λ ≤ 1

3
+ π2

9
, then∣∣δ2 − λδ21

∣∣+ (λ+
π2

18
− 1

3

)
|δ1|2 ≤

2

3π2
.

Furthermore, if 1
3
+ π2

9
≤ λ ≤ 1

3
+ 5π2

18
, then∣∣δ2 − λδ21

∣∣+ (1

3
+

5π2

18
− λ

)
|δ1|2 ≤

2

3π2
.

Each of these results is sharp.
Theorem 4.5. Let f ∈ UCV (α) (0 ≤ α < 1) be given by (1.1) and let the coeffi-
cients of log (f(z)/z) be given by (1.7) . Then for λ ∈ C,

∣∣δ2 − λδ21
∣∣ ≤


8(1−α)
9π4 |6 (1− α) (3λ− 1)− π2| ,

∣∣∣4(1−α)(3λ−1)
π2 − 2

3

∣∣∣ ≥ 1,

4(1−α)
3π2 ,

∣∣∣4(1−α)(3λ−1)
π2 − 2

3

∣∣∣ ≤ 1.
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Corollary 4.6. Let f ∈ UCV be given by (1.1) and let the coefficients of
log (f(z)/z) be given by (1.7) . Then for λ ∈ C,

∣∣δ2 − λδ21
∣∣ ≤


4

9π4 |3 (3λ− 1)− π2| ,
∣∣∣2(3λ−1)

π2 − 2
3

∣∣∣ ≥ 1,

2
3π2 ,

∣∣∣2(3λ−1)
π2 − 2

3

∣∣∣ ≤ 1.

4.2. Second Hankel determinant.
Theorem 4.7. Let f ∈ UCV (α) (0 ≤ α < 1) be given by (1.1) and let the coeffi-
cients of log (f(z)/z) be given by (1.7) . Then∣∣δ1δ3 − δ22

∣∣ ≤ 20 (1− α)2

9π4
+

64 (1− α)3

9π6
.

Proof. From (4.6) , Theorems 3.1, 3.7, and 3.3 for µ = 1/4, we find∣∣δ1δ3 − δ22
∣∣ =

∣∣∣∣18 (γ1γ3 − γ22
)
+

1

72
γ22 +

1

36
γ21

(
γ2 −

1

4
γ21

)∣∣∣∣
≤ 1

8

∣∣γ1γ3 − γ22
∣∣+ 1

72
|γ2|2 +

1

36
|γ1|2

∣∣∣∣γ2 − 1

4
γ21

∣∣∣∣
≤ 2 (1− α)2

π4
+

2 (1− α)2

9π4
+

64 (1− α)3

9π6

=
20 (1− α)2

9π4
+

64 (1− α)3

9π6
.

This completes the proof. □
Corollary 4.8. Let f ∈ UCV be given by (1.1) and let the coefficients of
log (f(z)/z) be given by (1.7) . Then∣∣δ1δ3 − δ22

∣∣ ≤ 5

9π4
+

8

9π6
.
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