

Khayyam Journal of Mathematics

 emis.de/journals/KJM kjm-math.org
SHARP BOUNDS FOR THE SECOND HANKEL DETERMINANT OF LOGARITHMIC COEFFICIENTS FOR PARABOLIC STARLIKE AND UNIFORMLY CONVEX FUNCTIONS OF ORDER α

SERAP BULUT
Communicated by S. Hejazian

Abstract. Let \mathcal{A} denote the class of analytic functions f in the open unit disk \mathbb{U} normalized by $f(0)=f^{\prime}(0)-1=0$, and let \mathcal{S} be the class of all functions $f \in \mathcal{A}$ that are univalent in \mathbb{U}. For a function $f \in \mathcal{S}$, the logarithmic coefficients $\delta_{n}(n=1,2,3, \ldots)$ are defined by

$$
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \delta_{n} z^{n} \quad(z \in \mathbb{U})
$$

For $0 \leq \alpha<1$, let $\mathcal{S}_{p}(\alpha)$ and $\mathcal{U C} \mathcal{V}(\alpha)$ denote the classes of functions $f \in \mathcal{A}$ such that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<(1-2 \alpha)+\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right) \quad(z \in \mathbb{U})
$$

and

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<2(1-\alpha)+\Re\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \quad(z \in \mathbb{U})
$$

respectively. In the present paper, we determine the sharp upper bound for $\left|\delta_{n}\right| \quad(n=1,2,3, \ldots)$ of functions f belonging to the classes $\mathcal{S}_{p}(\alpha)$. Also, we obtain upper bounds for $\left|\delta_{n}\right| \quad(n=1,2,3)$ of functions belonging to the class $\mathcal{U C V}(\alpha)$.

[^0]
1. Introduction

Let $\mathbb{R}=(-\infty, \infty)$ be the set of real numbers, let \mathbb{C} be the set of complex numbers, and let

$$
\mathbb{N}:=\{1,2,3, \ldots\}=\mathbb{N}_{0} \backslash\{0\}
$$

be the set of positive integers.
Assume that \mathcal{H} is the class of analytic functions in the open unit disc

$$
\mathbb{U}:=\{z \in \mathbb{C}:|z|<1\},
$$

and let the class \mathcal{P} be defined by

$$
\mathcal{P}=\{p \in \mathcal{H}: p(0)=1 \quad \text { and } \quad \Re(p(z))>0(z \in \mathbb{U})\}
$$

For two functions $f, g \in \mathcal{H}$, we say that the function f is subordinate to g in \mathbb{U} and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

if there exists a Schwarz function

$$
\omega \in \Omega:=\{\omega \in \mathcal{H}: \omega(0)=0 \quad \text { and } \quad|\omega(z)|<1(z \in \mathbb{U})\}
$$

such that

$$
f(z)=g(\omega(z)) \quad(z \in \mathbb{U}) .
$$

Indeed, it is known that

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Rightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence relation:

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Let \mathcal{A} denote the subclass of \mathcal{H} consisting of functions f normalized by

$$
f(0)=f^{\prime}(0)-1=0 .
$$

Each function $f \in \mathcal{A}$ can be expressed as

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

We also denote by \mathcal{S} the class of all functions in the normalized analytic function class \mathcal{A} that are univalent in \mathbb{U}.

Definition 1.1. A function $f \in \mathcal{A}$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$ if it satisfies the condition

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

We say that f is in the class $\mathcal{S}^{*}(\alpha)$ for such functions.
In particular, we set $\mathcal{S}^{*}(0)=\mathcal{S}^{*}$ for the class of starlike functions in the open unit disk \mathbb{U}. Recall that $\mathcal{S}^{*}(\alpha) \subset \mathcal{S}^{*} \subset \mathcal{S}$.

Definition 1.2 ([5]). A function $f \in \mathcal{A}$ is said to be parabolic starlike of order $\alpha(0 \leq \alpha<1)$ if and only if

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<(1-2 \alpha)+\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right) \quad(z \in \mathbb{U})
$$

We say that f is in the class $\mathcal{S}_{p}(\alpha)$ for such functions.
Equivalently,

$$
f(z) \in \mathcal{S}_{p}(\alpha) \Leftrightarrow \frac{z f^{\prime}(z)}{f(z)} \in \Omega_{\alpha} \quad(z \in \mathbb{U})
$$

where Ω_{α} denotes the parabolic region in the right half-plane
$\Omega_{\alpha}=\left\{w=u+i v: v^{2}<4(1-\alpha)(u-\alpha)\right\}=\{w:|w-1|<(1-2 \alpha)+\Re(w)\}$.
From its definition, it is clear that the class $\mathcal{S}_{p}(\alpha)$ is contained in the class $\mathcal{S}^{*}(\alpha)$.
Definition 1.3 ([15]). A function $f \in \mathcal{A}$ is said to be uniformly convex of order $\alpha(0 \leq \alpha<1)$ if and only if

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<2(1-\alpha)+\Re\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \quad(z \in \mathbb{U})
$$

We say that f is in the class $\mathcal{U C V}(\alpha)$ for such functions.
Lee [15] showed that

$$
\begin{equation*}
f \in \mathcal{U C} \mathcal{V}(\alpha) \Leftrightarrow z f^{\prime} \in \mathcal{S}_{p}(\alpha) \tag{1.2}
\end{equation*}
$$

In particular, we set $\mathcal{S}_{p}(1 / 2)=\mathcal{S}_{p}$ for the class of parabolic starlike functions introduced by Ronning [23], and $\mathcal{U C V}(1 / 2)=\mathcal{U C V}$ for the class of uniformly convex functions.

Ali and Singh [5] showed that the normalized Riemann mapping function $q_{\alpha}(z)$ from the open unit disk \mathbb{U} onto Ω_{α} is given by

$$
\begin{equation*}
q_{\alpha}(z)=1+\frac{4(1-\alpha)}{\pi^{2}}\left[\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right]^{2}:=1+\sum_{n=1}^{\infty} D_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

The branch of \sqrt{z} is chosen such that $\Im \sqrt{z} \geq 0$. Using the expansion of

$$
\log (1+z)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{n} \quad(z \in \mathbb{U})
$$

we get

$$
\begin{equation*}
\left[\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right]^{2}=4 z+\frac{8}{3} z^{2}+\frac{92}{45} z^{3}+\cdots \tag{1.4}
\end{equation*}
$$

From the above equalities (1.3) and (1.4), we obtain

$$
\begin{equation*}
q_{\alpha}(z)=1+\frac{16(1-\alpha)}{\pi^{2}} z+\frac{32(1-\alpha)}{3 \pi^{2}} z^{2}+\frac{368(1-\alpha)}{45 \pi^{2}} z^{3}+\cdots=1+\sum_{n=1}^{\infty} D_{n} z^{n} \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{n}=\frac{16(1-\alpha)}{n \pi^{2}} \sum_{j=0}^{n-1} \frac{1}{2 j+1} \quad(n \in \mathbb{N}) \tag{1.6}
\end{equation*}
$$

Lemma 1.4 ([16]). If $f \in \mathcal{S}_{p}(\alpha)$, then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q_{\alpha}(z) \quad(z \in \mathbb{U})
$$

where q_{α} is given in (1.3).
For a function $f \in \mathcal{S}$, given by (1.1), the logarithmic coefficients $\delta_{n}(n \in \mathbb{N})$ are defined by

$$
\begin{equation*}
F_{f}(z):=\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \delta_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1.7}
\end{equation*}
$$

and play a central role in the theory of univalent functions. Note that, by differentiating (1.7) and equating coefficients, we have

$$
\begin{gather*}
\delta_{1}=\frac{1}{2} a_{2} \tag{1.8}\\
\delta_{2}=\frac{1}{2}\left(a_{3}-\frac{1}{2} a_{2}^{2}\right), \tag{1.9}\\
\delta_{3}=\frac{1}{2}\left(a_{4}-a_{2} a_{3}+\frac{1}{3} a_{2}^{3}\right) . \tag{1.10}
\end{gather*}
$$

For the whole class \mathcal{S}, the sharp estimates of single logarithmic coefficients are known only for δ_{1} and δ_{2}, namely,

$$
\left|\delta_{1}\right| \leq 1, \quad\left|\delta_{2}\right| \leq \frac{1}{2}+\frac{1}{e^{2}}=0,635 \ldots
$$

and are unknown for $n \geq 3$.
So it is natural to ask the sharp estimates of $\left|\delta_{n}\right|(n \in \mathbb{N})$ for functions belonging to the subclasses of univalent function class \mathcal{S}. One of the main purpose of this paper is to determine the sharp upper bound for $\left|\delta_{n}\right|(n \in \mathbb{N})$ of the function f belonging to the class $\mathcal{S}_{p}(\alpha)$. Some recent works on logarithmic coefficients can be found in $[2,4,17]$.

On the other hand, one of the important tools in the theory of univalent functions are the Hankel determinants, which are used, for example, in showing that a function of bounded characteristic in \mathbb{U}, that is, a function that is a ratio of two bounded analytic functions, with its Laurent series around the origin having integral coefficients, is rational [8].

For integers $n, q \in \mathbb{N}$, Noonan and Thomas [19] defined the q th Hankel determinant $H_{q, n}(f)$ of $f \in \mathcal{A}$ of the form (1.1) by

$$
H_{q, n}(f)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right| \quad\left(a_{1}=1\right)
$$

Note that

$$
H_{2,1}(f)=\left|\begin{array}{cc}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right| \quad \text { and } \quad H_{2,2}(f)=\left|\begin{array}{cc}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|
$$

where the Hankel determinants $H_{2,1}(f)=a_{3}-a_{2}^{2}$ and $H_{2,2}(f)=a_{2} a_{4}-a_{3}^{2}$ are well known as Fekete-Szegö and the second Hankel determinant functionals, respectively. Furthermore, Fekete and Szegö [12] introduced the generalized functional $a_{3}-\lambda a_{2}^{2}$, where λ is some real number. Problems in this field have also been argued by several authors (see, for example, $[1,6,7,10,13,18,21]$).

Very recently, Kowalczyk and Lecko [14] introduced the Hankel determinant $H_{q, n}\left(\frac{F_{f}}{2}\right)$, which entries are logarithmic coefficients of f, that is,

$$
H_{q, n}\left(\frac{F_{f}}{2}\right)=\left|\begin{array}{cccc}
\delta_{n} & \delta_{n+1} & \ldots & \delta_{n+q-1} \\
\delta_{n+1} & \delta_{n+2} & \ldots & \delta_{n+q} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{n+q-1} & \delta_{n+q} & \ldots & \delta_{n+2 q-2}
\end{array}\right|
$$

The main purpose of this paper is to investigate the upper bound of

$$
H_{2,1}\left(\frac{F_{f}}{2}\right)=\delta_{1} \delta_{3}-\delta_{2}^{2}
$$

and of logarithmic coefficients δ_{n} for functions belonging to the classes $\mathcal{S}_{p}(\alpha)$ and $\mathcal{U C V}(\alpha)$.

2. Preliminary lemmas

Throughout this paper, we assume that

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \quad(z \in \mathbb{U}) . \tag{2.1}
\end{equation*}
$$

To prove our main results, we need the following lemmas.
Lemma 2.1 ([20]). Let $p \in \mathcal{P}$ be given by (2.1). Then

$$
\left|c_{n}\right| \leq 2 \quad(n \in \mathbb{N})
$$

Lemma 2.2 ([21]). Let $p \in \mathcal{P}$ be given by (2.1). Then for any complex number ν

$$
\left|c_{2}-\nu c_{1}^{2}\right| \leq 2 \max \{1,|2 \nu-1|\}
$$

and the result is sharp for the functions given by

$$
p(z)=\frac{1+z^{2}}{1-z^{2}} \quad \text { and } \quad p(z)=\frac{1+z}{1-z}
$$

Lemma 2.3 ([16]). Let $p \in \mathcal{P}$ be given by (2.1). Then

$$
\left|c_{2}-\nu c_{1}^{2}\right| \leq \begin{cases}-4 \nu+2, & \nu \leq 0 \\ 2, & 0 \leq \nu \leq 1 \\ 4 \nu-2, & \nu \geq 1\end{cases}
$$

When $\nu<0$ or $\nu>1$, the equality holds if and only if $p(z)$ is $\frac{1+z}{1-z}$ or one of its rotations. If $0<\nu<1$, then the equality holds if and only if $p(z)$ is $\frac{1+z^{2}}{1-z^{2}}$ or one of its rotations. If $\nu=0$, then the equality holds if and only if

$$
p(z)=\left(\frac{1}{2}+\frac{1}{2} \eta\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \eta\right) \frac{1-z}{1+z} \quad(0 \leq \eta \leq 1)
$$

or one of its rotations. If $\nu=1$, then the equality holds if and only if $p(z)$ is the reciprocal of one of the functions such that the equality holds in the case when $\nu=0$.

Although the above upper bound is sharp, in the case when $0<\nu<1$, it can be further improved as follows:

$$
\left|c_{2}-\nu c_{1}^{2}\right|+\nu\left|c_{1}\right|^{2} \leq 2 \quad\left(0<\nu \leq \frac{1}{2}\right)
$$

and

$$
\left|c_{2}-\nu c_{1}^{2}\right|+(1-\nu)\left|c_{1}\right|^{2} \leq 2 \quad\left(\frac{1}{2}<\nu \leq 1\right)
$$

Lemma 2.4 ([9]). If $p \in \mathcal{P}$ is of the form (2.1) with $c_{1} \geq 0$, then

$$
\left\{\begin{array}{l}
c_{1}=2 \zeta_{1}, \tag{2.2}\\
c_{2}=2 \zeta_{1}^{2}+2\left(1-\zeta_{1}^{2}\right) \zeta_{2}, \\
c_{3}=2 \zeta_{1}^{3}+4\left(1-\zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}-2\left(1-\zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}^{2}+2\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}
\end{array}\right.
$$

for some $\zeta_{1} \in[0,1]$ and $\zeta_{2}, \zeta_{3} \in \overline{\mathbb{U}}=\{z \in \mathbb{C}:|z| \leq 1\}$.
For $\zeta_{1} \in \mathbb{U}$ and $\zeta_{2} \in \partial \mathbb{U}=\{z \in \mathbb{C}:|z|=1\}$, there is a unique function $p \in \mathcal{P}$ with c_{1} and c_{2} as in (2.2), namely,

$$
p(z)=\frac{1+\left(\overline{\zeta_{1}} \zeta_{2}+\zeta_{1}\right) z+\zeta_{2} z^{2}}{1+\left(\overline{\zeta_{1}} \zeta_{2}-\zeta_{1}\right) z-\zeta_{2} z^{2}} \quad(z \in \mathbb{U})
$$

Lemma 2.5 ([22]). Let the function \mathfrak{h} given by

$$
\mathfrak{h}(z)=1+\sum_{k=1}^{\infty} \mathfrak{h}_{k} z^{k} \quad(z \in \mathbb{U})
$$

be subordinate to the function \mathfrak{H} given by

$$
\mathfrak{H}(z)=1+\sum_{k=1}^{\infty} \mathfrak{H}_{k} z^{k} \quad(z \in \mathbb{U}) .
$$

If $\mathfrak{H}(z)$ is univalent in \mathbb{U} and $\mathfrak{H}(\mathbb{U})$ is convex, then

$$
\left|\mathfrak{h}_{k}\right| \leq\left|\mathfrak{H}_{1}\right| \quad(k \in \mathbb{N}) .
$$

Lemma 2.6 ([10]). Given real numbers A, B, C, let

$$
Y(A, B, C):=\max _{z \in \overline{\mathbb{U}}}\left(\left|A+B z+C z^{2}\right|+1-|z|^{2}\right) .
$$

I. If $A C \geq 0$, then

$$
Y(A, B, C)= \begin{cases}|A|+|B|+|C|, & |B| \geq 2(1-|C|) \\ 1+|A|+\frac{B^{2}}{4(1-|C|)}, & |B|<2(1-|C|)\end{cases}
$$

II. If $A C<0$, then
$Y(A, B, C)= \begin{cases}1-|A|+\frac{B^{2}}{4(1-|C|)}, & -4 A C\left(C^{-2}-1\right) \leq B^{2} \wedge|B|<2(1-|C|), \\ 1+|A|+\frac{B^{2}}{4(1+|C|)}, & B^{2}<\min \left\{4(1+|C|)^{2},-4 A C\left(C^{-2}-1\right)\right\}, \\ R(A, B, C), & \text { otherwise, }\end{cases}$ where

$$
R(A, B, C)= \begin{cases}|A|+|B|-|C|, & |C|(|B|+4|A|) \leq|A B| \\ -|A|+|B|+|C|, & |A B| \leq|C|(|B|-4|A|) \\ (|A|+|C|) \sqrt{1-\frac{B^{2}}{4 A C}} & \text { otherwise. }\end{cases}
$$

Lemma 2.7 ([3]). Let φ be an analytic univalent function in the unit disk \mathbb{U} satisfying $\varphi(0)=1$ such that it has series expansion of the form

$$
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots, \quad B_{1} \neq 0
$$

If φ is convex and the function f given by (1.1) satisfies the subordination

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z) \quad(z \in \mathbb{U})
$$

then the logarithmic coefficients δ_{n} of f satisfy the inequality

$$
\left|\delta_{n}\right| \leq \frac{\left|B_{1}\right|}{2 n} \quad(n \in \mathbb{N})
$$

3. The class $\mathcal{S}_{p}(\alpha)$

3.1. The logarithmic coefficients.

Theorem 3.1. Let $f \in \mathcal{S}_{p}(\alpha)(0 \leq \alpha<1)$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\begin{equation*}
\left|\delta_{n}\right| \leq \frac{8(1-\alpha)}{n \pi^{2}} \quad(n \in \mathbb{N}) . \tag{3.1}
\end{equation*}
$$

For each $n \in \mathbb{N}$, there exist a function f_{n} given by

$$
\frac{z f_{n}^{\prime}(z)}{f_{n}(z)}=q_{\alpha}\left(z^{n}\right) \quad(n \in \mathbb{N})
$$

such that the each equality in (3.1) is sharp.
Proof. The proof is easily obtained from Lemma 2.7.
Corollary 3.2. Let $f \in \mathcal{S}_{p}$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\left|\delta_{n}\right| \leq \frac{4}{n \pi^{2}} \quad(n \in \mathbb{N})
$$

The result is sharp.

Theorem 3.3. Let $f \in \mathcal{S}_{p}(\alpha)(0 \leq \alpha<1)$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\begin{aligned}
& \quad\left|\delta_{2}-\mu \delta_{1}^{2}\right| \leq \begin{cases}\frac{8(1-\alpha)}{\pi^{2}}\left(\frac{1}{3}-\frac{8(1-\alpha)}{\pi^{2}} \mu\right), & \mu \leq-\frac{\pi^{2}}{48(1-\alpha)}, \\
\frac{4(1-\alpha)}{\pi^{2}}, & -\frac{\pi^{2}}{48(1-\alpha)} \leq \mu \leq \frac{5 \pi^{2}}{48(1-\alpha)}, \\
-\frac{8(1-\alpha)}{\pi^{2}}\left(\frac{1}{3}-\frac{8(1-\alpha)}{\pi^{2}} \mu\right), & \mu \geq \frac{5 \pi^{2}}{48(1-\alpha)} .\end{cases} \\
& \text { If }-\frac{\pi^{2}}{48(1-\alpha)} \leq \mu \leq \frac{\pi^{2}}{24(1-\alpha)}, \text { then } \\
& \qquad\left|\delta_{2}-\mu \delta_{1}^{2}\right|+\left(\mu+\frac{\pi^{2}}{48(1-\alpha)}\right)\left|\delta_{1}\right|^{2} \leq \frac{4(1-\alpha)}{\pi^{2}} .
\end{aligned}
$$

Furthermore, if $\frac{\pi^{2}}{24(1-\alpha)} \leq \mu \leq \frac{5 \pi^{2}}{48(1-\alpha)}$, then

$$
\left|\delta_{2}-\mu \delta_{1}^{2}\right|+\left(\frac{5 \pi^{2}}{48(1-\alpha)}-\mu\right)\left|\delta_{1}\right|^{2} \leq \frac{4(1-\alpha)}{\pi^{2}}
$$

Each of these results is sharp.
Proof. Let $f \in \mathcal{S}_{p}(\alpha)$. By the subordination principle and Lemma 1.4, there exists the Schwarz's function $u(z)$ such that

$$
\begin{equation*}
F(z):=\frac{z f^{\prime}(z)}{f(z)}=q_{\alpha}(u(z)) \quad(z \in \mathbb{U}) \tag{3.2}
\end{equation*}
$$

If

$$
F(z)=1+b_{1} z+b_{2} z^{2}+b_{3} z^{3}+\cdots,
$$

then the first equality in (3.2) implies that

$$
\begin{equation*}
a_{2}=b_{1}, \quad a_{3}=\frac{1}{2}\left(b_{2}+b_{1}^{2}\right), \quad a_{4}=\frac{1}{3}\left(b_{3}+\frac{3}{2} b_{1} b_{2}+\frac{1}{2} b_{1}^{3}\right) . \tag{3.3}
\end{equation*}
$$

Since q_{α} is univalent in the open unit disk \mathbb{U}, by (3.2), the function

$$
\begin{equation*}
p(z):=\frac{1+u(z)}{1-u(z)}=\frac{1+q_{\alpha}^{-1}(F(z))}{1-q_{\alpha}^{-1}(F(z))}=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \tag{3.4}
\end{equation*}
$$

belongs to the class \mathcal{P}. Solving $u(z)$ in terms of $p(z)$ in (3.4), we obtain

$$
\begin{equation*}
u(z)=\frac{1}{2}\left[c_{1} z+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) z^{3}+\cdots\right] . \tag{3.5}
\end{equation*}
$$

In view of (3.2), using (3.5) in (1.5), we find

$$
\begin{aligned}
1+b_{1} z+ & b_{2} z^{2}+b_{3} z^{3}+\cdots \\
= & 1+\frac{1}{2} D_{1} c_{1} z+\left\{\frac{1}{2} D_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} D_{2} c_{1}^{2}\right\} z^{2} \\
& +\left\{\frac{1}{2} D_{1}\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right)+\frac{1}{2} D_{2} c_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{8} D_{3} c_{1}^{3}\right\} z^{3}+\cdots .
\end{aligned}
$$

Equating the coefficients in the above equalities and considering (1.6), we have

$$
\begin{equation*}
b_{1}=\frac{8(1-\alpha)}{\pi^{2}} c_{1}, \quad b_{2}=\frac{8(1-\alpha)}{\pi^{2}}\left(c_{2}-\frac{c_{1}^{2}}{6}\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{3}=\frac{8(1-\alpha)}{\pi^{2}}\left(c_{3}-\frac{1}{3} c_{1} c_{2}+\frac{2}{45} c_{1}^{3}\right) \tag{3.7}
\end{equation*}
$$

Using (3.3) in (3.6) and (3.7), we get

$$
\begin{align*}
a_{2}= & \frac{8(1-\alpha)}{\pi^{2}} c_{1}, \tag{3.8}\\
a_{3}= & \frac{8(1-\alpha)}{2 \pi^{2}}\left[c_{2}-\left(\frac{1}{6}-\frac{8(1-\alpha)}{\pi^{2}}\right) c_{1}^{2}\right], \tag{3.9}\\
a_{4}= & \frac{8(1-\alpha)}{3 \pi^{2}}\left[c_{3}-\left(\frac{1}{3}-\frac{12(1-\alpha)}{\pi^{2}}\right) c_{1} c_{2}\right. \\
& \left.+\left(\frac{2}{45}-\frac{2(1-\alpha)}{\pi^{2}}+\frac{32(1-\alpha)^{2}}{\pi^{4}}\right) c_{1}^{3}\right] . \tag{3.10}
\end{align*}
$$

For δ_{1}, from (1.8) and (3.8), we have

$$
\begin{equation*}
\delta_{1}=\frac{4(1-\alpha)}{\pi^{2}} c_{1} \tag{3.11}
\end{equation*}
$$

and for δ_{2}, substituting for a_{2} and a_{3} from (3.8) and (3.9) in (1.9), we obtain

$$
\begin{equation*}
\delta_{2}=\frac{2(1-\alpha)}{\pi^{2}}\left(c_{2}-\frac{1}{6} c_{1}^{2}\right) . \tag{3.12}
\end{equation*}
$$

Furthermore, from (1.8) and (3.8) - (3.10), we get

$$
\begin{equation*}
\delta_{3}=\frac{4(1-\alpha)}{3 \pi^{2}}\left(c_{3}-\frac{1}{3} c_{1} c_{2}+\frac{2}{45} c_{1}^{3}\right) . \tag{3.13}
\end{equation*}
$$

Then from (3.11) and (3.12), we get

$$
\left|\delta_{2}-\mu \delta_{1}^{2}\right|=\frac{2(1-\alpha)}{\pi^{2}}\left|c_{2}-\nu c_{1}^{2}\right|, \quad \nu=\frac{1}{6}+\frac{8(1-\alpha)}{\pi^{2}} \mu .
$$

The assertion of Theorem 3.3 now follows by an application of Lemma 2.3.
To show that the bounds asserted by Theorem 3.3 are sharp, we define the following functions:

$$
K_{n}(z) \quad(n=2,3, \ldots),
$$

by

$$
K_{n}(0)=0=K_{n}^{\prime}(0)-1,
$$

and

$$
\frac{z K_{n}^{\prime}(z)}{K_{n}(z)}=q_{\alpha}\left(z^{n-1}\right)
$$

and the functions $F_{\eta}(z)$ and $G_{\eta}(z)(0 \leq \eta \leq 1)$ by

$$
F_{\eta}(0)=0=F_{\eta}^{\prime}(0)-1 \quad \text { and } \quad G_{\eta}(0)=0=G_{\eta}^{\prime}(0)-1,
$$

$$
\frac{z F_{\eta}^{\prime}(z)}{F_{\eta}(z)}=q_{\alpha}\left(\frac{z(z+\eta)}{1+\eta z}\right)
$$

and

$$
\frac{z G_{\eta}^{\prime}(z)}{G_{\eta}(z)}=q_{\alpha}\left(-\frac{z(z+\eta)}{1+\eta z}\right),
$$

respectively. Then, clearly, the functions $K_{n}, F_{\eta}, G_{\eta} \in \mathcal{S}_{p}(\alpha)$. We also write $K=K_{2}$. If $\mu<-\frac{\pi^{2}}{48(1-\alpha)}$ or $\mu>\frac{5 \pi^{2}}{48(1-\alpha)}$, then the equality of Theorem 3.3 holds if and only if f is K or one of its rotations. When $-\frac{\pi^{2}}{48(1-\alpha)}<\mu<\frac{5 \pi^{2}}{48(1-\alpha)}$, then the equality holds if and only if f is K_{3} or one of its rotations. If $\mu=-\frac{\pi^{2}}{48(1-\alpha)}$, then the equality holds if and only if f is F_{η} or one of its rotations. If $\mu=\frac{5 \pi^{2}}{48(1-\alpha)}$, then the equality holds if and only if f is G_{η} or one of its rotations.
Corollary 3.4. Let $f \in \mathcal{S}_{p}$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\left|\delta_{2}-\mu \delta_{1}^{2}\right| \leq \begin{cases}\frac{4}{\pi^{2}}\left(\frac{1}{3}-\frac{4}{\pi^{2}} \mu\right), & \mu \leq-\frac{\pi^{2}}{24} \\ \frac{2}{\pi^{2}}, & -\frac{\pi^{2}}{24} \leq \mu \leq \frac{5 \pi^{2}}{24} \\ -\frac{4}{\pi^{2}}\left(\frac{1}{3}-\frac{4}{\pi^{2}} \mu\right), & \mu \geq \frac{5 \pi^{2}}{24}\end{cases}
$$

If $-\frac{\pi^{2}}{24} \leq \mu \leq \frac{\pi^{2}}{12}$, then

$$
\left|\delta_{2}-\mu \delta_{1}^{2}\right|+\left(\mu+\frac{\pi^{2}}{24}\right)\left|\delta_{1}\right|^{2} \leq \frac{2}{\pi^{2}}
$$

Furthermore, if $\frac{\pi^{2}}{12} \leq \mu \leq \frac{5 \pi^{2}}{24}$, then

$$
\left|\delta_{2}-\mu \delta_{1}^{2}\right|+\left(\frac{5 \pi^{2}}{24}-\mu\right)\left|\delta_{1}\right|^{2} \leq \frac{2}{\pi^{2}}
$$

Each of these results is sharp.
Theorem 3.5. Let $f \in \mathcal{S}_{p}(\alpha)$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then for $\mu \in \mathbb{C}$ and

$$
\chi(\mu)=\frac{1}{3}+\frac{16(1-\alpha)}{\pi^{2}} \mu,
$$

we have

$$
\left|\delta_{2}-\mu \delta_{1}^{2}\right| \leq \begin{cases}\frac{8(1-\alpha)}{3 \pi^{4}}\left|24(1-\alpha) \mu-\pi^{2}\right|, & |\chi(\mu)-1| \geq 1 \\ \frac{4(1-\alpha)}{\pi^{2}}, & |\chi(\mu)-1| \leq 1\end{cases}
$$

Proof. From (1.8), (3.8) and (3.12), we get

$$
\left|\delta_{2}-\mu \delta_{1}^{2}\right|=\frac{2(1-\alpha)}{\pi^{2}}\left|c_{2}-\nu c_{1}^{2}\right|, \quad \nu=\frac{1}{6}+\frac{8(1-\alpha)}{\pi^{2}} \mu
$$

for any $\mu \in \mathbb{C}$. The desired result is obtained from Lemma 2.2.

Corollary 3.6. Let $f \in \mathcal{S}_{p}$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then for $\mu \in \mathbb{C}$ and

$$
\chi(\mu)=\frac{1}{3}+\frac{8}{\pi^{2}} \mu
$$

we have

$$
\left|\delta_{2}-\mu \delta_{1}^{2}\right| \leq \begin{cases}\frac{4}{3 \pi^{4}}\left|12 \mu-\pi^{2}\right|, & |\chi(\mu)-1| \geq 1 \\ \frac{2}{\pi^{2}}, & |\chi(\mu)-1| \leq 1\end{cases}
$$

3.2. Second Hankel determinant.

Theorem 3.7. Let $f \in \mathcal{S}_{p}(\alpha)(0 \leq \alpha<1)$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \frac{16(1-\alpha)^{2}}{\pi^{4}}
$$

The inequality is sharp.
Proof. Suppose that $f \in \mathcal{S}_{p}(\alpha)$ is given by (1.1). By using (3.11) - (3.13) and Lemma 2.4, we obtain

$$
\begin{align*}
\delta_{1} \delta_{3}-\delta_{2}^{2}= & \frac{4(1-\alpha)^{2}}{\pi^{4}}\left[\frac{17}{540} c_{1}^{4}-\frac{1}{9} c_{1}^{2} c_{2}+\frac{4}{3} c_{1} c_{3}-c_{2}^{2}\right] \\
= & \frac{16(1-\alpha)^{2}}{3 \pi^{4}}\left[\frac{32}{45} \zeta_{1}^{4}+\frac{4}{3}\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{2} \zeta_{2}-\left(1-\zeta_{1}^{2}\right)\left(\zeta_{1}^{2}+3\right) \zeta_{2}^{2}\right. \\
& \left.+4\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{1} \zeta_{3}\right] \tag{3.14}
\end{align*}
$$

(a) Firstly suppose that $\zeta_{1}=1$. Then by (3.14), we have

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right|=\frac{512}{135 \pi^{4}}(1-\alpha)^{2}
$$

(b) Now, suppose that $\zeta_{1}=0$. Then by (3.14),

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right|=\frac{16(1-\alpha)^{2}}{\pi^{4}}\left|\zeta_{2}\right|^{2} \leq \frac{16(1-\alpha)^{2}}{\pi^{4}}
$$

(c) Finally, suppose that $\zeta_{1} \in(0,1)$. By the fact that $\left|\zeta_{3}\right| \leq 1$, from (3.14), we get

$$
\begin{aligned}
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq & \frac{64(1-\alpha)^{2}}{3 \pi^{4}} \zeta_{1}\left(1-\zeta_{1}^{2}\right) \\
& \times\left[\left|\frac{8 \zeta_{1}^{3}}{45\left(1-\zeta_{1}^{2}\right)}+\frac{\zeta_{1} \zeta_{2}}{3}-\frac{\left(\zeta_{1}^{2}+3\right) \zeta_{2}^{2}}{4 \zeta_{1}}\right|+1-\left|\zeta_{2}\right|^{2}\right] \\
= & \frac{64(1-\alpha)^{2}}{3 \pi^{4}} \zeta_{1}\left(1-\zeta_{1}^{2}\right)\left[\left|A+B \zeta_{2}+C \zeta_{2}^{2}\right|+1-\left|\zeta_{2}\right|^{2}\right]
\end{aligned}
$$

where

$$
A:=\frac{8 \zeta_{1}^{3}}{45\left(1-\zeta_{1}^{2}\right)}, \quad B:=\frac{\zeta_{1}}{3}, \quad C:=-\frac{\zeta_{1}^{2}+3}{4 \zeta_{1}}
$$

Since $A C<0$, we apply Lemma 2.6 only for the case II.
(c.1) The inequality

$$
-4 A C\left(\frac{1}{C^{2}}-1\right)-B^{2}=\frac{8 \zeta_{1}^{2}\left(\zeta_{1}^{2}+3\right)}{45\left(1-\zeta_{1}^{2}\right)}\left(\frac{16 \zeta_{1}^{2}}{\left(\zeta_{1}^{2}+3\right)^{2}}-1\right)-\frac{\zeta_{1}^{2}}{9} \leq 0
$$

is equivalent to $-\zeta_{1}^{4}+30 \zeta_{1}^{2}-29 \leq 0$, which evidently holds for $\zeta_{1} \in(0,1)$. Moreover, the inequality $|B|<2(1-|C|)$ is equivalent to $\frac{5}{3} \zeta_{1}^{2}-4 \zeta_{1}+3<0$, which is false for $\zeta_{1} \in(0,1)$.
(c.2) Since

$$
4(1+|C|)^{2}=\frac{\left(\zeta_{1}+1\right)^{2}\left(\zeta_{1}+3\right)^{2}}{4 \zeta_{1}^{2}}>0
$$

and

$$
-4 A C\left(\frac{1}{C^{2}}-1\right)=\frac{8 \zeta_{1}^{2}\left(\zeta_{1}^{2}-9\right)}{45\left(\zeta_{1}^{2}+3\right)}<0,
$$

we see that the inequality

$$
\frac{\zeta_{1}^{2}}{9}<\min \left\{\frac{\left(\zeta_{1}+1\right)^{2}\left(\zeta_{1}+3\right)^{2}}{4 \zeta_{1}^{2}}, \frac{8 \zeta_{1}^{2}\left(\zeta_{1}^{2}-9\right)}{45\left(\zeta_{1}^{2}+3\right)}\right\}=\frac{8 \zeta_{1}^{2}\left(\zeta_{1}^{2}-9\right)}{45\left(\zeta_{1}^{2}+3\right)}
$$

is false for $\zeta_{1} \in(0,1)$.
(c.3) The inequality

$$
|C|(|B|+4|A|)-|A B|=\frac{\left(\zeta_{1}^{2}+3\right)}{12}\left(1+\frac{32 \zeta_{1}^{2}}{15\left(1-\zeta_{1}^{2}\right)}\right)-\frac{8 \zeta_{1}^{4}}{135\left(1-\zeta_{1}^{2}\right)} \leq 0
$$

is equivalent to

$$
19 \zeta_{1}^{4}+198 \zeta_{1}^{2}+135 \leq 0
$$

which is false for $\zeta_{1} \in(0,1)$.
(c.4) We get

$$
|A B|-|C|(|B|-4|A|)=\frac{173 \zeta_{1}^{4}+378 \zeta_{1}^{2}-135}{540\left(1-\zeta_{1}^{2}\right)}:=\frac{173 s^{2}+378 s-135}{540(1-s)}
$$

where $s=\zeta_{1}^{2} \in(0,1)$. The equation $173 s^{2}+378 s-135=0$ has a positive unique root such that

$$
0<s_{1}=\frac{-189+6 \sqrt{1641}}{173}<1
$$

In other words, for $\zeta_{1}^{*}=\sqrt{s_{1}}$, we have $|A B|-|C|(|B|-4|A|)=0$. Furthermore, $|A B| \leq|C|(|B|-4|A|)$ when $\zeta_{1} \in\left(0, \zeta_{1}^{*}\right]$ and $|A B| \geq|C|(|B|-4|A|)$ when $\zeta_{1} \in\left[\zeta_{1}^{*}, 1\right)$.

- For $\zeta_{1} \in\left(0, \zeta_{1}^{*}\right]$, we obtain

$$
\begin{aligned}
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| & \leq \frac{64(1-\alpha)^{2}}{3 \pi^{4}} \zeta_{1}\left(1-\zeta_{1}^{2}\right)(-|A|+|B|+|C|) \\
& =\frac{16(1-\alpha)^{2}}{135 \pi^{4}}\left[-137 \zeta_{1}^{4}-30 \zeta_{1}^{2}+135\right] \\
& =\chi\left(\zeta_{1}\right) .
\end{aligned}
$$

Since

$$
\chi^{\prime}\left(\zeta_{1}\right)=-\frac{64(1-\alpha)^{2}}{135 \pi^{4}} \zeta_{1}\left[137 \zeta_{1}^{2}+15\right]<0
$$

for $\zeta_{1} \in\left(0, \zeta_{1}^{*}\right], \chi$ is a decreasing function on $\left(0, \zeta_{1}^{*}\right]$. This implies that

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \chi(0)=\frac{16(1-\alpha)^{2}}{\pi^{4}}
$$

- For $\zeta_{1} \in\left[\zeta_{1}^{*}, 1\right)$, we obtain

$$
\begin{aligned}
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| & \leq \frac{64(1-\alpha)^{2}}{3 \pi^{4}} \zeta_{1}\left(1-\zeta_{1}^{2}\right)(|A|+|C|) \sqrt{1-\frac{B^{2}}{4 A C}} \\
& =\frac{16(1-\alpha)^{2}}{135 \pi^{4}}\left[-13 \zeta_{1}^{4}-90 \zeta_{1}^{2}+135\right] \sqrt{\frac{3 \zeta_{1}^{2}+29}{8\left(\zeta_{1}^{2}+3\right)}} \\
& =\psi\left(\zeta_{1}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
\psi^{\prime}\left(\zeta_{1}\right)= & -\frac{16(1-\alpha)^{2}}{135 \pi^{4}} \zeta_{1} \\
& \times\left[2\left(13 \zeta_{1}^{2}+45\right) \sqrt{\frac{3 \zeta_{1}^{2}+29}{2\left(\zeta_{1}^{2}+3\right)}}+5 \frac{-13 \zeta_{1}^{4}-90 \zeta_{1}^{2}+135}{\left(\zeta_{1}^{2}+3\right)^{2}} \sqrt{\frac{2\left(\zeta_{1}^{2}+3\right)}{3 \zeta_{1}^{2}+29}}\right]<0
\end{aligned}
$$

for $\zeta_{1} \in\left[\zeta_{1}^{*}, 1\right), \psi$ is a decreasing function on $\left[\zeta_{1}^{*}, 1\right)$. This implies that

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \psi\left(\zeta_{1}\right) \leq \psi\left(\zeta_{1}^{*}\right)=\chi\left(\zeta_{1}^{*}\right) \leq \chi(0)=\frac{16(1-\alpha)^{2}}{\pi^{4}}
$$

Summarizing parts (a)-(c), it follows the desired inequality. Equality holds for the function $f \in \mathcal{A}$ given by

$$
\frac{z f^{\prime}(z)}{f(z)}=q_{\alpha}\left(z^{2}\right) \quad(z \in \mathbb{U})
$$

for which $a_{2}=a_{4}=0$ and $a_{3}=\frac{8(1-\alpha)}{\pi^{2}}$.
Corollary 3.8. Let $f \in \mathcal{S}_{p}$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then we have

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \frac{4}{\pi^{4}}
$$

The inequality is sharp.
3.3. The coefficients of the inverse function. Since univalent functions are one-to-one, they are invertible and the inverse functions need not to be defined on the entire unit disk \mathbb{U}. In fact, the Koebe one-quarter theorem [11] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $1 / 4$. Thus every function $f \in \mathcal{A}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right) .
$$

In fact, for a function $f \in \mathcal{A}$ given by (1.1) the inverse function f^{-1} is given by

$$
\begin{align*}
f^{-1}(w) & =w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \\
& =: w+\sum_{n=2}^{\infty} A_{n} w^{n} \tag{3.15}
\end{align*}
$$

Theorem 3.9. Let $f \in \mathcal{S}_{p}(\alpha)(0 \leq \alpha<1)$ be given by (1.1), and let f^{-1} be the inverse function of f defined by (3.15). Then

$$
\begin{gathered}
\left|A_{2}\right| \leq \frac{16(1-\alpha)}{\pi^{2}} \\
\left|A_{3}\right| \leq \begin{cases}\frac{16(1-\alpha)}{3 \pi^{4}}\left[72(1-\alpha)-\pi^{2}\right], & 0 \leq \alpha \leq 1-\frac{5 \pi^{2}}{144} \\
\frac{8(1-\alpha)}{\pi^{2}}, & 1-\frac{5 \pi^{2}}{144} \leq \alpha<1\end{cases}
\end{gathered}
$$

and for $\lambda \in \mathbb{C}$

$$
\left|A_{3}-\lambda A_{2}^{2}\right| \leq \begin{cases}\frac{16(1-\alpha)}{3 \pi^{4}}\left|48(1-\alpha) \lambda-72(1-\alpha)+\pi^{2}\right|, & |h(\lambda)-1| \geq 1 \\ \frac{8(1-\alpha)}{\pi^{2}}, & |h(\lambda)-1| \leq 1\end{cases}
$$

where

$$
h(\lambda)=\frac{1}{3}+\frac{48(1-\alpha)}{\pi^{2}}-\lambda \frac{32(1-\alpha)}{\pi^{2}}
$$

Proof. Let the function $f \in \mathcal{A}$ given by (1.1) be in the class $\mathcal{S}_{p}(\alpha)$, and let f^{-1} be the inverse function of f defined by (3.15). Then using (3.8)-(3.12), we obtain

$$
\begin{gathered}
A_{2}=-a_{2}=-\frac{8(1-\alpha)}{\pi^{2}} c_{1} \\
A_{3}=2 a_{2}^{2}-a_{3}=\left(\frac{96(1-\alpha)^{2}}{\pi^{4}}+\frac{2(1-\alpha)}{3 \pi^{2}}\right) c_{1}^{2}-\frac{4(1-\alpha)}{\pi^{2}} c_{2} \\
=-\frac{4(1-\alpha)}{\pi^{2}}\left[c_{2}-\left(\frac{1}{6}+\frac{24(1-\alpha)}{\pi^{2}}\right) c_{1}^{2}\right]
\end{gathered}
$$

and

$$
A_{3}-\lambda A_{2}^{2}=-\frac{4(1-\alpha)}{\pi^{2}}\left[c_{2}-\left(\frac{1}{6}+\frac{24(1-\alpha)}{\pi^{2}}+\lambda \frac{16(1-\alpha)}{\pi^{2}}\right) c_{1}^{2}\right]
$$

The inequality for $\left|A_{2}\right|$ is obtained by the means of Lemma 2.1. An application of Lemma 2.3 gives the inequality for $\left|A_{3}\right|$. On the other hand, we find the upper bound on $\left|A_{3}-\lambda A_{2}^{2}\right|$ from Lemma 2.2.

Corollary 3.10. Let $f \in \mathcal{S}_{p}$ be given by (1.1), and let f^{-1} be the inverse function of f defined by (3.15). Then

$$
\left|A_{2}\right| \leq \frac{8}{\pi^{2}}, \quad\left|A_{3}\right| \leq \frac{8}{3 \pi^{4}}\left(36-\pi^{2}\right)
$$

and for $\lambda \in \mathbb{C}$,

$$
\left|A_{3}-\lambda A_{2}^{2}\right| \leq \begin{cases}\frac{8}{3 \pi^{4}}\left|24 \lambda-36+\pi^{2}\right|, & |h(\lambda)-1| \geq 1 \\ \frac{4}{\pi^{2}}, & |h(\lambda)-1| \leq 1\end{cases}
$$

where

$$
h(\lambda)=\frac{1}{3}+\frac{24}{\pi^{2}}-\lambda \frac{16}{\pi^{2}} .
$$

4. The class $\mathcal{U C} \mathcal{V}(\alpha)$

4.1. The logarithmic coefficients.

Theorem 4.1. Let $f \in \mathcal{U C \mathcal { V }}(\alpha)(0 \leq \alpha<1)$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\begin{aligned}
& \left|\delta_{1}\right| \leq \frac{4(1-\alpha)}{\pi^{2}} \\
& \left|\delta_{2}\right| \leq \begin{cases}\frac{8(1-\alpha)}{3 \pi^{2}}\left(\frac{1}{3}+\frac{2(1-\alpha)}{\pi^{2}}\right), & 0 \leq \alpha \leq 1-\frac{\pi^{2}}{12} \\
\frac{4(1-\alpha)}{3 \pi^{2}}, & 1-\frac{\pi^{2}}{12} \leq \alpha<1\end{cases} \\
& \left|\delta_{3}\right| \leq \frac{2(1-\alpha)}{3 \pi^{2}}+\frac{16(1-\alpha)^{2}}{3 \pi^{4}}
\end{aligned}
$$

The bounds for $\left|\delta_{1}\right|$ and $\left|\delta_{2}\right|$ are sharp.
Proof. If $f \in \mathcal{U C V}(\alpha)$, then from (1.2), we know that $z f^{\prime} \in \mathcal{S}_{p}(\alpha)$. Define the function g by

$$
\begin{equation*}
g(z)=z f^{\prime}(z)=z+\sum_{n=2}^{\infty} d_{n} z^{n} \quad(z \in \mathbb{U}) \tag{4.1}
\end{equation*}
$$

and consider the logarithmic coefficients $\gamma_{n}(n \in \mathbb{N})$ defined by

$$
\begin{equation*}
F_{g}(z):=\log \frac{g(z)}{z}=2 \sum_{n=1}^{\infty} \gamma_{n} z^{n} \quad(z \in \mathbb{U}) \tag{4.2}
\end{equation*}
$$

Therefore

$$
\begin{gather*}
\gamma_{1}=\frac{1}{2} d_{2} \tag{4.3}\\
\gamma_{2}=\frac{1}{2}\left(d_{3}-\frac{1}{2} d_{2}^{2}\right) \tag{4.4}\\
\gamma_{3}=\frac{1}{2}\left(d_{4}-d_{2} d_{3}+\frac{1}{3} d_{2}^{3}\right) . \tag{4.5}
\end{gather*}
$$

By equating the coefficients of z^{n} reciprocally in (4.1), we get $n a_{n}=d_{n}$ for all $n \in \mathbb{N}$. On the other hand, since $g=z f^{\prime} \in \mathcal{S}_{p}(\alpha)$, considering the logarithmic
coefficients γ_{n} given by (4.2) and using (1.8) - (1.10), the logarithmic coefficients of the function $f \in \mathcal{U C} \mathcal{V}(\alpha)$ are obtained equal to

$$
\left\{\begin{array}{l}
\delta_{1}=\frac{1}{2} \gamma_{1}, \tag{4.6}\\
\delta_{2}=\frac{1}{3}\left(\gamma_{2}+\frac{1}{4} \gamma_{1}^{2}\right), \\
\delta_{3}=\frac{1}{4}\left(\gamma_{3}+\frac{2}{3} \gamma_{1} \gamma_{2}\right) .
\end{array}\right.
$$

By letting $n=1$ in Theorem 3.1, we obtain

$$
\left|\delta_{1}\right|=\frac{1}{2}\left|\gamma_{1}\right| \leq \frac{4(1-\alpha)}{\pi^{2}}
$$

Next, the upper bound of $\left|\delta_{2}\right|$ is obtained by Theorem 3.3 for $\mu=-1 / 4$. So we get

$$
\left|\delta_{2}\right|=\frac{1}{3}\left|\gamma_{2}+\frac{1}{4} \gamma_{1}^{2}\right| \leq \begin{cases}\frac{8(1-\alpha)}{3 \pi^{2}}\left(\frac{1}{3}+\frac{2(1-\alpha)}{\pi^{2}}\right), & 0 \leq \alpha \leq 1-\frac{\pi^{2}}{12} \\ \frac{4(1-\alpha)}{3 \pi^{2}}, & 1-\frac{\pi^{2}}{12} \leq \alpha<1\end{cases}
$$

Finally, for $\left|\delta_{3}\right|$,

$$
\begin{aligned}
\left|\delta_{3}\right| & =\frac{1}{4}\left|\gamma_{3}+\frac{2}{3} \gamma_{1} \gamma_{2}\right| \\
& \leq \frac{1}{4}\left[\left|\gamma_{3}\right|+\frac{2}{3}\left|\gamma_{1}\right|\left|\gamma_{2}\right|\right] \\
& \leq \frac{2(1-\alpha)}{3 \pi^{2}}+\frac{16(1-\alpha)^{2}}{3 \pi^{4}}
\end{aligned}
$$

Corollary 4.2. Let $f \in \mathcal{U C V}$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\left|\delta_{1}\right| \leq \frac{2}{\pi^{2}}, \quad\left|\delta_{2}\right| \leq \frac{2}{3 \pi^{2}}, \quad\left|\delta_{3}\right| \leq \frac{1}{3 \pi^{2}}+\frac{4}{3 \pi^{4}}
$$

The bounds for $\left|\delta_{1}\right|$ and $\left|\delta_{2}\right|$ are sharp.
Theorem 4.3. Let $f \in \mathcal{U C} \mathcal{V}(\alpha)(0 \leq \alpha<1)$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\begin{aligned}
& \left|\delta_{2}-\lambda \delta_{1}^{2}\right| \leq \begin{cases}\frac{8(1-\alpha)}{3 \pi^{2}}\left(\frac{1}{3}-\frac{2(1-\alpha)(3 \lambda-1)}{\pi^{2}}\right), & \lambda \leq \frac{1}{3}-\frac{\pi^{2}}{36(1-\alpha)} \\
\frac{4(1-\alpha)}{3 \pi^{2}}, & \frac{1}{3}-\frac{\pi^{2}}{36(1-\alpha)} \leq \lambda \leq \frac{1}{3}+\frac{5 \pi^{2}}{36(1-\alpha)}, \\
-\frac{8(1-\alpha)}{3 \pi^{2}}\left(\frac{1}{3}-\frac{2(1-\alpha)(3 \lambda-1)}{\pi^{2}}\right), & \lambda \geq \frac{1}{3}+\frac{5 \pi^{2}}{36(1-\alpha)} .\end{cases} \\
& \text { If } \frac{1}{3}-\frac{\pi^{2}}{36(1-\alpha)} \leq \lambda \leq \frac{1}{3}+\frac{\pi^{2}}{18(1-\alpha)}, \text { then } \\
&
\end{aligned}
$$

Furthermore, if $\frac{1}{3}+\frac{\pi^{2}}{18(1-\alpha)} \leq \lambda \leq \frac{1}{3}+\frac{5 \pi^{2}}{36(1-\alpha)}$, then

$$
\left|\delta_{2}-\lambda \delta_{1}^{2}\right|+\left(\frac{1}{3}+\frac{5 \pi^{2}}{36(1-\alpha)}-\lambda\right)\left|\delta_{1}\right|^{2} \leq \frac{4(1-\alpha)}{3 \pi^{2}} .
$$

Each of these results is sharp.
Proof. From (4.6), for $\lambda \in \mathbb{R}$, we get

$$
\delta_{2}-\lambda \delta_{1}^{2}=\frac{1}{3}\left(\gamma_{2}+\frac{1-3 \lambda}{4} \gamma_{1}^{2}\right) .
$$

This implies that

$$
\begin{equation*}
\left|\delta_{2}-\lambda \delta_{1}^{2}\right|=\frac{1}{3}\left|\gamma_{2}-\mu \gamma_{1}^{2}\right|, \quad \mu:=\frac{3 \lambda-1}{4} . \tag{4.7}
\end{equation*}
$$

Using Theorem 3.3, it is obtained that

$$
\left|\delta_{2}-\lambda \delta_{1}^{2}\right| \leq \begin{cases}\frac{8(1-\alpha)}{3 \pi^{2}}\left(\frac{1}{3}-\frac{2(1-\alpha)(3 \lambda-1)}{\pi^{2}}\right), & \lambda \leq \frac{1}{3}-\frac{\pi^{2}}{36(1-\alpha)} \\ \frac{4(1-\alpha)}{3 \pi^{2}}, & \frac{1}{3}-\frac{\pi^{2}}{36(1-\alpha)} \leq \lambda \leq \frac{1}{3}+\frac{5 \pi^{2}}{36(1-\alpha)} \\ -\frac{8(1-\alpha)}{3 \pi^{2}}\left(\frac{1}{3}-\frac{2(1-\alpha)(3 \lambda-1)}{\pi^{2}}\right), & \lambda \geq \frac{1}{3}+\frac{5 \pi^{2}}{36(1-\alpha)} .\end{cases}
$$

Corollary 4.4. Let $f \in \mathcal{U C V}$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\left|\delta_{2}-\lambda \delta_{1}^{2}\right| \leq \begin{cases}\frac{4}{3 \pi^{2}}\left(\frac{1}{3}-\frac{3 \lambda-1}{\pi^{2}}\right), & \lambda \leq \frac{1}{3}-\frac{\pi^{2}}{18} \\ \frac{2}{3 \pi^{2}}, & \frac{1}{3}-\frac{\pi^{2}}{18} \leq \lambda \leq \frac{1}{3}+\frac{5 \pi^{2}}{18} \\ -\frac{4}{3 \pi^{2}}\left(\frac{1}{3}-\frac{3 \lambda-1}{\pi^{2}}\right), & \lambda \geq \frac{1}{3}+\frac{5 \pi^{2}}{18} .\end{cases}
$$

If $\frac{1}{3}-\frac{\pi^{2}}{18} \leq \lambda \leq \frac{1}{3}+\frac{\pi^{2}}{9}$, then

$$
\left|\delta_{2}-\lambda \delta_{1}^{2}\right|+\left(\lambda+\frac{\pi^{2}}{18}-\frac{1}{3}\right)\left|\delta_{1}\right|^{2} \leq \frac{2}{3 \pi^{2}}
$$

Furthermore, if $\frac{1}{3}+\frac{\pi^{2}}{9} \leq \lambda \leq \frac{1}{3}+\frac{5 \pi^{2}}{18}$, then

$$
\left|\delta_{2}-\lambda \delta_{1}^{2}\right|+\left(\frac{1}{3}+\frac{5 \pi^{2}}{18}-\lambda\right)\left|\delta_{1}\right|^{2} \leq \frac{2}{3 \pi^{2}}
$$

Each of these results is sharp.
Theorem 4.5. Let $f \in \mathcal{U C V}(\alpha)(0 \leq \alpha<1)$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then for $\lambda \in \mathbb{C}$,

$$
\left|\delta_{2}-\lambda \delta_{1}^{2}\right| \leq \begin{cases}\frac{8(1-\alpha)}{9 \pi^{4}}\left|6(1-\alpha)(3 \lambda-1)-\pi^{2}\right|, & \left|\frac{4(1-\alpha)(3 \lambda-1)}{\pi^{2}}-\frac{2}{3}\right| \geq 1 \\ \frac{4(1-\alpha)}{3 \pi^{2}}, & \left|\frac{4(1-\alpha)(3 \lambda-1)}{\pi^{2}}-\frac{2}{3}\right| \leq 1\end{cases}
$$

Corollary 4.6. Let $f \in \mathcal{U C V}$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then for $\lambda \in \mathbb{C}$,

$$
\left|\delta_{2}-\lambda \delta_{1}^{2}\right| \leq \begin{cases}\frac{4}{9 \pi^{4}}\left|3(3 \lambda-1)-\pi^{2}\right|, & \left|\frac{2(3 \lambda-1)}{\pi^{2}}-\frac{2}{3}\right| \geq 1 \\ \frac{2}{3 \pi^{2}}, & \left|\frac{2(3 \lambda-1)}{\pi^{2}}-\frac{2}{3}\right| \leq 1\end{cases}
$$

4.2. Second Hankel determinant.

Theorem 4.7. Let $f \in \mathcal{U C \mathcal { V }}(\alpha)(0 \leq \alpha<1)$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \frac{20(1-\alpha)^{2}}{9 \pi^{4}}+\frac{64(1-\alpha)^{3}}{9 \pi^{6}}
$$

Proof. From (4.6), Theorems 3.1, 3.7, and 3.3 for $\mu=1 / 4$, we find

$$
\begin{aligned}
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| & =\left|\frac{1}{8}\left(\gamma_{1} \gamma_{3}-\gamma_{2}^{2}\right)+\frac{1}{72} \gamma_{2}^{2}+\frac{1}{36} \gamma_{1}^{2}\left(\gamma_{2}-\frac{1}{4} \gamma_{1}^{2}\right)\right| \\
& \leq \frac{1}{8}\left|\gamma_{1} \gamma_{3}-\gamma_{2}^{2}\right|+\frac{1}{72}\left|\gamma_{2}\right|^{2}+\frac{1}{36}\left|\gamma_{1}\right|^{2}\left|\gamma_{2}-\frac{1}{4} \gamma_{1}^{2}\right| \\
& \leq \frac{2(1-\alpha)^{2}}{\pi^{4}}+\frac{2(1-\alpha)^{2}}{9 \pi^{4}}+\frac{64(1-\alpha)^{3}}{9 \pi^{6}} \\
& =\frac{20(1-\alpha)^{2}}{9 \pi^{4}}+\frac{64(1-\alpha)^{3}}{9 \pi^{6}} .
\end{aligned}
$$

This completes the proof.
Corollary 4.8. Let $f \in \mathcal{U C V}$ be given by (1.1) and let the coefficients of $\log (f(z) / z)$ be given by (1.7). Then

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \frac{5}{9 \pi^{4}}+\frac{8}{9 \pi^{6}}
$$

References

1. H.R. Abdel-Gawad and D.K. Thomas, The Fekete-Szegö problem for strongly close-toconvex functions, Proc. Amer. Math. Soc. 114 (1992) 345-349.
2. E.A. Adegani, D. Alimohammadi, T. Bulboacă, N.E. Cho and M. Bidkham, On the logarithmic coefficients for some classes defined by subordination, AIMS Mathematics 8 (2023), no. 9, 21732-21745.
3. E.A. Adegani, N.E. Cho and M. Jafari, Logarithmic coefficients for univalent functions defined by subordination, Mathematics 7 (2019), Art. no. 408, 12 pp.
4. E.A. Adegani, A. Motamednezhad, M. Jafari and T. Bulboacă, Logarithmic coefficients inequality for the family of functions convex in one direction, Mathematics 11 (2023), Art. no. 2140, 10 pp.
5. R.M. Ali and V. Singh, Coefficients of parabolic starlike functions of order ρ, in: Computational Methods and Function Theory 1994 (Penang), pp. 23-36, Ser. Approx. Decompos. 5, World Sci. Publ. River Edge, NJ, 1995.
6. D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (2013), 103-107.
7. D. Bansal, Fekete-Szegö problem for a new class of analytic functions, Int. J. Math. Math. Sci. 2011 (2011), Art. ID 143096, 5 pp.
8. D.G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69 (1963) 362-366.
9. N. Cho, B. Kowalczyk and A. Lecko, Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis, Bull. Aust. Math. Soc. 100 (2019) 86-96.
10. J.H. Choi, Y.C. Kim and T. Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan 59 (2007) 707-727.
11. P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York, 1983.
12. M. Fekete and G. Szegö, Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc. 8 (1933) 85-89.
13. S. Kanas and A. Lecko, On the Fekete-Szegö problem and the domain of convexity for a certain class of univalent functions, Zeszyty Nauk. Politech. Rzeszowskiej, Mat. Fiz. 10 (1990) 49-57.
14. B. Kowalczyk and A. Lecko, Second Hankel determinant of logarithmic coefficients of convex and starlike functions, Bull. Aust. Math. Soc. 105 (2022), no. 3, 458-467.
15. S.K. Lee, Characterizations of parabolic starlike functions and the generalized uniformly convex functions, Master's thesis, Universiti Sains Malaysia, Penang, 2000.
16. W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), pp. 157-169, Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994.
17. N.H. Mohammed, Sharp bounds of logarithmic coefficient problems for functions with respect to symmetric points, Mat. Stud. 59 (2023), no. 1, 68-75.
18. G. Murugusundaramoorthy and N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bull. Math. Anal. Appl. 1 (2009), no. 3, 85-89.
19. J.W. Noonan and D.K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976) 337-346.
20. Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
21. V. Ravichandran, A. Gangadharan and M. Darus, Fekete-Szegö inequality for certain class of Bazilevic functions, Far East J. Math. Sci. 15 (2004) 171-180.
22. W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc. (2) 48 (1943) 48-82.
23. F. Ronning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 47 (1993) 123-134.

Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, 41285 Kartepe-Kocaeli, Turkey.

Email address: serap.bulut@kocaeli.edu.tr

[^0]: Date: Received: 4 May 2023; Revised: 7 November 2023; Accepted: 23 January 2024.
 2020 Mathematics Subject Classification. Primary 30C45.
 Key words and phrases. Analytic function, univalent function, logarithmic coefficients, subordination, parabolic-starlike functions.

