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ABSTRACT. Let A denote the class of analytic functions f in the open unit
disk U normalized by f(0) = f/(0) — 1 = 0, and let S be the class of all
functions f € A that are univalent in U. For a function f € S, the logarithmic
coefficients d,, (n =1,2,3,...) are defined by

10g@=2i6nz" (z€U).
n=1

For 0 < a <1, let S, (o) and UCV () denote the classes of functions f € A
such that

Fo <o en(£5) e

2f"(2) 2f"(2)
70 <2(1 oz)—i—%(f,(z)) (ze ),
respectively. In the present paper, we determine the sharp upper bound for
[0,] (n=1,2,3,...) of functions f belonging to the classes S, (). Also, we
obtain upper bounds for |0,,| (n =1,2,3) of functions belonging to the class

Ucy (a).

and
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1. INTRODUCTION

Let R = (—o00,00) be the set of real numbers, let C be the set of complex
numbers, and let

N:={1,2,3,...} = No\ {0}

be the set of positive integers.
Assume that H is the class of analytic functions in the open unit disc

U:={zeC:|z] <1},
and let the class P be defined by
P={peH:p(0)=1 and R(p(z)) >0 (z €U)}.

For two functions f,g € H, we say that the function f is subordinate to g in
U and write

f(z)<g(z) (2€0)
if there exists a Schwarz function
weR:={weH w0)=0 and |w(2) <1 (z€U)}
such that
f(z)=g(w(z) (z€0).
Indeed, it is known that
f(z)=g(z) (z€U)= f(0)=g(0) and [(U)cCg(U).

Furthermore, if the function ¢ is univalent in U, then we have the following
equivalence relation:

f(z)=<g(2) (2€U) & f(0)=g(0) and [f(U)Cg(U).
Let A denote the subclass of ‘H consisting of functions f normalized by
f(0) = f'(0) =1 =0.

Each function f € A can be expressed as
f(2) :z—l—Zanz" (z€U). (1.1)
n=2
We also denote by S the class of all functions in the normalized analytic function

class A that are univalent in U.

Definition 1.1. A function f € A is said to be starlike of order a@ (0 < a < 1)
it it satisfies the condition

%Cﬁg)>a (z € U).

We say that f is in the class S* («) for such functions.

In particular, we set §* (0) = S* for the class of starlike functions in the open
unit disk U. Recall that $* (o) C §* C S.
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Definition 1.2 ([5]). A function f € A is said to be parabolic starlike of order
a (0 <a < 1) if and only if

2f'(z) _ (Zf’(z))
8 1l<(l1-2a)+ R B (z€U).
We say that f is in the class S, («) for such functions.
Equivalently,
ﬂde&@ﬂ#?&?e% (€U,

where (), denotes the parabolic region in the right half-plane
Q={w=u+iw:v*<4(l-a)(u—a)} ={w:|w—1] < (1 —2a)+ R (w)}.
From its definition, it is clear that the class S, («) is contained in the class S* («) .

Definition 1.3 ([15]). A function f € A is said to be uniformly convex of order
a (0 <a<1)if and only if

2f"(2) (Zf”(Z))
<2(1-—a)+ N 2 € U).
E N I W TE W A
We say that f is in the class UCV («) for such functions.

Lee [15] showed that

FeUCY (o) 2f €S, (a). (1.2)

In particular, we set S, (1/2) = S, for the class of parabolic starlike functions
introduced by Ronning [23], and UCV (1/2) = UCV for the class of uniformly
convex functions.

Ali and Singh [5] showed that the normalized Riemann mapping function g,(2)
from the open unit disk U onto €1, is given by

Go(z) = 1+4(1—a) {logle\/z} ::1+§:Dnz" (z € U). (1.3)

2 1—+/z

The branch of 1/z is chosen such that Iy/z > 0. Using the expansion of

log(1+2)= (z €U),
n=1
we get ,
1+z 8 , 92,
1 Y PTLp B B 1.4
{ogl_\/z] a2t (1.4)

From the above equalities (1.3) and (1.4), we obtain

16(1—a) 32(1—a) , 368(1—q) 4 = .
Qa(z) =1+ 2 zZ+ 372 25+ 4572 2= 1+n§:1: DnZ ) (15)
where )
_ 16¢ 1 —a) «
D : 1.
n §:%+J (n €N) (1.6)

7=0
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Lemma 1.4 ([16]). If f € S, (a), then

2f'(2)
/()

<(z)  (z€D),

where q, s given in (1.3).

For a function f € S, given by (1.1), the logarithmic coefficients d,, (n € N)
are defined by

e,

z

Fy(z) :=log Zénz" (zeU), (1.7)

and play a central role in the theory of univalent functions. Note that, by differ-
entiating (1.7) and equating coefficients, we have

1

51 = 5&2, (18)
1 1
g = 5 <a3 - 5@) ) (1.9)
1 1
53 = 5 ((I4 — agasz + §a§) . (110)

For the whole class S, the sharp estimates of single logarithmic coefficients are
known only for 9; and d,, namely,

1 1
0l <1 0| <=-+—==0,635...
|1‘— ’ ’2’—2_'_62 )

and are unknown for n > 3.

So it is natural to ask the sharp estimates of |4, | (n € N) for functions belonging
to the subclasses of univalent function class §. One of the main purpose of this
paper is to determine the sharp upper bound for |6,| (n € N) of the function f
belonging to the class S, (). Some recent works on logarithmic coefficients can
be found in [2,4,17].

On the other hand, one of the important tools in the theory of univalent func-
tions are the Hankel determinants, which are used, for example, in showing that
a function of bounded characteristic in U, that is, a function that is a ratio of
two bounded analytic functions, with its Laurent series around the origin having
integral coefficients, is rational [8].

For integers n,q € N, Noonan and Thomas [19] defined the gth Hankel deter-
minant H,,(f) of f € A of the form (1.1) by

Qp An+1 - - - an—i—q—l
Ap+1 Apt2 .. Aptq
Hq,n(f) = . . . (CL1 = ]_)
Uptg—1 Opiq --- Opg2q-2
Note that
ap Gz az asg
H = H =
21 =0, and 22(/) = |0, aul
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where the Hankel determinants Hy1(f) = a3 —a3 and Hso(f) = asay —a% are well
known as Fekete-Szeg6 and the second Hankel determinant functionals, respec-
tively. Furthermore, Fekete and Szegd [12] introduced the generalized functional
az — Aa3, where ) is some real number. Problems in this field have also been
argued by several authors (see, for example, [1,6,7,10,13,18,21]).

Very recently, Kowalczyk and Lecko [14] introduced the Hankel determinant

H,, <%), which entries are logarithmic coefficients of f, that is,
On  Opg1 oo Opgg—t
(Ff) Ont1 Ong2 -..  Ongg
Hyn| = | = i . . .
2 : : - :
6n+q71 6n+q s 6n+2q72

The main purpose of this paper is to investigate the upper bound of

F
H,, (71”) = 0,03 — 62

and of logarithmic coefficients §,, for functions belonging to the classes S, () and
UCy (a) .
2. PRELIMINARY LEMMAS
Throughout this paper, we assume that
p(2)=14+ciz+c2®+e32® +--- (2 €0). (2.1)
To prove our main results, we need the following lemmas.
Lemma 2.1 ([20]). Let p € P be given by (2.1). Then
lea] <2 (neN).
Lemma 2.2 ([21]). Let p € P be given by (2.1). Then for any complex number v
|2 — vef| < 2max {1, |2v — 1]},
and the result is sharp for the functions given by
1422 1+
1— 22 1—2z
Lemma 2.3 ([16]). Let p € P be given by (2.1). Then

—4v + 2, v <0,
{CQ—VC%’ < 2, 0<rv<il,
4v — 2, v > 1.

p(2) and  p(z)

When v < 0 or v > 1, the equality holds if and only if p(z) is % or one of its
1422

rotations. If 0 < v < 1, then the equality holds if and only if p (z) is =
of its rotations. If v =0, then the equality holds if and only if

p(Z)Z(%ﬂL%n) 1+z+(1—177) % (0<p<)

or one
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or one of its rotations. If v = 1, then the equality holds if and only if p (2) is the
reciprocal of one of the functions such that the equality holds in the case when
v=0.

Although the above upper bound is sharp, in the case when 0 < v < 1, it can be
further improved as follows:

1
}02—ucf|+1/\c1]2§2 (O<V§§>

and

1
’02—V03‘+(1—V)|01|2§2 (§<V§1>.

Lemma 2.4 ([9]). If p € P is of the form (2.1) with ¢, > 0, then

C1 = 2C1a
2 =2 +2(1=¢) Gy (2.2)
e =20 +4(1- ) GG —2(1-F) GG +2(1-¢) (1-1GF) G
for some (1 € [0,1] and (5,3 € U={2€C:|z| <1},
For (; € U and (; € OU = {z € C: |z| = 1}, there is a unique function p € P
with ¢; and ¢3 as in (2.2), namely,

_ 1+ (Gl +G) 2 + (2
L+ (GG — G) 2 — (222
Lemma 2.5 ([22]). Let the function b given by

p(2)

(z€U).

h(z) =1+ bz*  (2€U)
k=1
be subordinate to the function $ given by
ﬁ(z)zl—i—Zf)kzk (z€U).
k=1

If $(z) is univalent in U and H(U) is convex, then

bkl < I9|  (k€N).
Lemma 2.6 ([10]). Given real numbers A, B, C, let

Y (A,B,C) :=max (|A+ Bz +C2*| +1— ERE

zelU
L If AC' >0, then

Al +|B[+[Cl, Bl =2(1-]|C]),
Y (A,B,C) =

2
L+ Al + 52y, 1Bl <2(1-[C)).
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II. If AC <0, then

— Al + 3 1 IC\)’ —4AC(C™2-1)< B* A |B|<2(1—|C)),
Y(A,B,C) =4 1+ A+ g2z, B*<min{4(1+|C|)*, —~44C(C2-1)},
| R(A,B,C), otherwise,
where
(Al +|B| - |C], ICI(1B|+4]|A]) < [AB],
R(A, B,C)={ —lAl+|B[+]|C], |AB| < |C[(|B] —414]),

\ (JA| +|C)\/1 = B=  otherwise.

Lemma 2.7 ([3]). Let ¢ be an analytic univalent function in the unit disk U
satisfying ¢ (0) = 1 such that it has series expansion of the form
()—1+Blz+Bng+Bgz3+-~-, Bl#O

If ¢ is conver and the function f given by (1.1) satisfies the subordination

2f'(2)
< p(z ze€U),
<o) (e
then the logarithmic coefficients 6,, of f satisfy the inequality
B
10, < | ;‘ (n € N).

3. THE cLASS S, (a)
3.1. The logarithmic coefficients.

Theorem 3.1. Let f € S, (a) (0 < a < 1) be given by (1.1) and let the coefficients
of log (f(2)/z) be given by (1.7). Then

8(1—a)
For each n € N, there exist a function f, given by
2fn(2)
= qa(2" n €N
ulz) ) (€N

such that the each equality in (3.1) is sharp.
Proof. The proof is easily obtained from Lemma 2.7. O

Corollary 3.2. Let f € S, be given by (1.1) and let the coefficients of log (f(z)/z)
be given by (1.7). Then

4

The result is sharp.
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Theorem 3.3. Let f € S, (a) (0 < v < 1) be given by (1.1) and let the coefficients
of log (f(2)/z) be given by (1.7). Then

((8(1—a) (1 _ 8(1-®) 2
72 (5_ P M>’ IS~ agia)

2 4(1—a) —r RO
|05 — 67| < 7 48(1 5 SHS 48(1 a)

™

8(1—a) (1 8(1—a)
B <§_ ) f“>’ /‘>48(1a)

\ s
71.2
If ~i5iimey < 1 < aiiays then
w2 4(1 - «)
by — b} — )P
}2 N1|+(M+48(1_a>>’1| — 7T2

Furthermore, if #Z_Q) <pu< %, then

5 4(1— )
2 2

< —)—-—"”
‘52 u&l} + (48(1 ) ;z) |01 3

Each of these results is sharp.

Proof. Let f € S, (a). By the subordination principle and Lemma 1.4, there
exists the Schwarz’s function u (z) such that

F(z) = Z]{(g = qu(u(z)) (2 €U). (3.2)

If
F(Z):1+b12+b222+b323+"‘,

then the first equality in (3.2) implies that
1 1 3 1
az = by, a3 =5 (b2 + b?) ) g = 3 (b?, + 55152 + §b§> . (3.3)

Since ¢, is univalent in the open unit disk U, by (3.2), the function

L) 14 (F(2)
PE) =T = 1—qa<<>>

belongs to the class P. Solving u(z) in terms of p(z) in (3.4), we obtain

u(z) = % {clz + (02 C%) <03 P CZ?) S } . 35)

In view of (3.2), using (3.5) in (1.5), we find
1+ b2+ byz? + bg2® 4 - -

1 1 2 1
=1+ §D1012 + {§D1 <CQ — ﬁ) + ZDQC%} 22

=142+ 22 +e32° +- (3.4)

b |
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Equating the coefficients in the above equalities and considering (1.6), we have

8(1 -« 8(1—a c
by = %017 by = % (CQ - gl) ) (3.6)
and ( )
8(1 -« 1 2 4
b327(3_56162+£ ) (37)
Using (3.3) in (3.6) and (3.7), we get
81—«
a9 = %Cl, (38)
8(1—a) 1 8(1—a)\ ,
as = 2—71_2 |:62 — (6 — T Cil (39)
8(1l—a) 1 12(1— )
o= Mo (5- ) oo
2 2(1—a) 32(1-a)) ,
+ <4—5 = + o crl - (3.10)
For 41, from (1.8) and (3.8), we have
4(1—
5y = %al, (3.11)
T

and for dq, substituting for ay and a3 from (3.8) and (3.9) in (1.9), we obtain

2(1 - a) 1
(52 = T <CQ — 60%) . (312)
Furthermore, from (1.8) and (3.8) — (3.10), we get

4(1 -« 1 2

53 = % <63 — 56102 -+ E 3) . (313)

Then from (3.11) and (3.12), we get
2 (1 1 8(l—«
‘52-#5%|:(—‘02—Vcl} V:—+¥u.

2 6 7r

The assertion of Theorem 3.3 now follows by an application of Lemma 2.3.
To show that the bounds asserted by Theorem 3.3 are sharp, we define the
following functions:
K, (2) (n=2,3,...),

by
K, (0)=0=K(0)—1,
and "
ZK:((ZZ)) = o ("),

and the functions F, (z) and G, (2) (0 <n <1) by
F,(0)=0=F/(0)—=1 and G,(0)=0=G,(0)—1,
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B, ()

1+nz

Gy () _ (_M) |

G, (2) 1+nz
respectively. Then, clearly, the functions K,,F, G, € S, (a). We also write
K=K, Ifu< —ﬁ or > 48( ) then the equahty of Theorem 3.3 holds if

and only if f is K or one of its rotations. When — m <p< 48( ) then the

and

equality holds if and only if f is K3 or one of its rotations. If u = —m, then
the equality holds if and only if f is F,, or one of its rotations. If p = 48?1”;),
then the equality holds if and only if f is G, or one of its rotations. O

Corollary 3.4. Let f € S, be given by (1.1) and let the coefficients of log (f(z)/z)
be given by (1.7). Then

4 (1 4 2
= (5 =), < =5
2 2 2 5m2
|02 — poi| << 5, S <n<%r

—w-en). pz
[f—g—zgu ., then

T 2
|52—M5%‘+( ﬂ) 161 Sﬁ'

Furthermore, zf <u< 52i4, then

5772 2 2

Each of these results is sharp.

Theorem 3.5. Let f € S,(a) be given by (1.1) and let the coefficients of
log (f(2)/z) be given by (1.7). Then for p € C and

1 16(1—a)
X (1) = 3T
we have
L4 —a)yp -7, Ix(w) -1 =1,
’(52 —M(S%‘ <
L X () =1 < 1.
Proof. From (1.8), (3.8) and (3.12), we get
2(1 1 8(1—a)
20 _ _
‘52—/,6(51‘—71_—‘02 VCl‘ V—E—FT/,L

for any p € C. The desired result is obtained from Lemma 2.2. O
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Corollary 3.6. Let f € S, be given by (1.1) and let the coefficients oflog (f(2)/z)
be given by (1.7). Then for u € C and

1 8
X (u) =5+ —u,
we have
gor 120 =72, Ix(w) = 1] > 1,
|52—/J5ﬂ <
g X (1) =1 < 1.

3.2. Second Hankel determinant.

Theorem 3.7. Let f € S, (a) (0 < o < 1) be given by (1.1) and let the coefficients
of log (f(2)/z) be given by (1.7). Then
16 (1 — )®

4

0105 — 65| <

T
The inequality is sharp.

Proof. Suppose that f € S, («) is given by (1.1). By using (3.11) — (3.13) and
Lemma 2.4, we obtain

4(1—a)* [ 17 1 4
(5153 — (Sg = % [%0111 — 50%02 + §0163 — C%
16 (1 — a)® [32 4
- B B 0-dda- - @+ e
+4 (1= ¢7) (1= 1¢l") QiG] - (3.14)
(a) Firstly suppose that (; = 1. Then by (3.14), we have
512
B v I . 2
|5153 52’ 1357‘{'4 (]_ Oé) .

(b) Now, suppose that ¢; = 0. Then by (3.14),

16 (1 — )’ Gl < 16(1:04)2.

16165 — 02| =

4 ™
(c) Finally, suppose that ¢; € (0,1). By the fact that |(3| < 1, from (3.14), we
get

B 2
‘5153_53} < 64(;704)@ (1-¢)
8¢ GG (G +3)E 2
XH45(1—C12)+ 3 4 H_M
2
_ 64(;7—404)6 (1= [[A+BG+CE| +1- 161,
where 8¢3 ¢ 2+3
S ) S - | G G, |
“Ho-g CTw O Tag

Since AC' < 0, we apply Lemma 2.6 only for the case II.
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(c.1) The inequality

1 s SG(G43) (166 5
-0 (1) -2 - e (G ) -5 =0

is equivalent to —( + 30¢Z — 29 < 0, which evidently holds for ¢; € (0,1).
Moreover, the inequality |B| < 2(1 —|C|) is equivalent to 3¢ —4¢ + 3 < 0,
which is false for ¢; € (0,1).

(c.2) Since

(G +1)? (G +3)°
A¢2

1 _ 8 (¢ —9)

we see that the inequality

g<umn{@r+n%g+ﬁf &?@%—%}__&?@%—%

>0

4(1+|C)* =

and

9 4¢3 "A5(CE+3) [ 45(¢ +3)
is false for ¢; € (0,1).
(c.3) The inequality

243 3202 8¢t
C1(IB] +4]A]) — |AB| = (CIJQL ) <1+ 15(151412)) - 135(1C1— @ ="

is equivalent to
19¢! + 198¢2 + 135 < 0,
which is false for ¢; € (0,1).
(c.4) We get
4 2 2
AB| — [C] (|B] — 4] A[) 173(;44(;(5))178C22) 135 . 173354—1(; (31785 135’
— 61 —s)

where s = (? € (0,1). The equation 173s*+ 378s — 135 = 0 has a positive unique

root such that
—189 + 64/1641
0< s = 173 < 1.

In other words, for (f = /s1, we have |AB| —|C| (|B| — 4|A]|) = 0. Furthermore,
|AB| < |C|(|B] —4]A]) when ¢; € (0,¢f] and |AB| > |C|(|B] — 4|A|) when

Cl € Kfa 1) :
e For (; € (0,(f], we obtain
64 (1 — a)?
s < E2q -y -1l 181+ 10)
2
% [—137¢H — 30¢2 + 135]
= x(Q)-
Since )
X' (G) = —MQ [137¢F +15] <0

13574
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for ¢; € (0,¢{], x is a decreasing function on (0, (;]. This implies that

16 (1 — )
10165 — 03] < x (0) = %
e For (; € [(},1), we obtain
64 (1 — )® B?
0105 — 03| TCI (1=¢) (A +[CD /1~ 1AC
16 (1 — a)? A ) 3¢2 429
= DU T Y gt 135] 4 [ oL T2
Ig5mt L1360~ 906+ 135y g (¢t +3)
= ¥ (G1)-
Since
, 16 (1 — a)?
Y(C) =— ﬁ@

32429 _—13¢H—90¢2+135 [2(C2+3)
’ [2 WS+ 5ara o @ 3G 129

for ¢; € [(7,1), ¢ is a decreasing function on [(},1). This implies that
C16(1—a)?

4

10105 — 83| < ¥ (G) <9 (&) = x (¢F) < x(0)

Summarizing parts (a)-(c), it follows the desired inequality. Equality holds for
the function f € A given by

T

Z]{(S) —(z?)  (z€U)

for which a9 = a4 = 0 and a3 = %. O
Corollary 3.8. Let f € S, be given by (1.1) and let the coefficients of log (f(z)/z)
be given by (1.7). Then we have

4
6,05 - 33| < .

The inequality is sharp.

3.3. The coefficients of the inverse function. Since univalent functions are
one-to-one, they are invertible and the inverse functions need not to be defined on
the entire unit disk U. In fact, the Koebe one-quarter theorem [11] ensures that
the image of U under every univalent function f € S contains a disk of radius
1/4. Thus every function f € A has an inverse f~!, which is defined by

frfR)=2 (2€U)

and
Fut ) =u (el <nin@ =),
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In fact, for a function f € A given by (1.1) the inverse function f~! is given by

fHw) = w—aw®+ (243 — az) w® — (5a3 — Basaz + ag) w' + -
— w Z Aw™. (3.15)
n=2

Theorem 3.9. Let f € S, (a) (0 < a < 1) be given by (1.1), and let f~' be the
inverse function of f defined by (3.15). Then

16 (1 — «
|A2’§¥7
T
o8 m(1-a) -7, 0<a<l-im,
|As| < 2
8(;;(1), 1—%§O[<17
and for A € C
B0Z0) g (1 —a) A = T2(1—a) + 7%,  [h(N) =1 > 1,
|A3 — MA3| <
= h) -1 <1,
where
1 48(1— 32 (1 —

3 2 T

Proof. Let the function f € A given by (1.1) be in the class S, (a), and let f~*
be the inverse function of f defined by (3.15) . Then using (3.8)-(3.12), we obtain

8(1—
A2:_a2:_¥%
m
96 (1—a)* 2(1—a) 4(1—a)
2 2
A; = 2a2—a3:< vy + 372 Cl_TCQ
4(1—a) I 24(1—aw)\ ,
B _T[CQ_<E+T “al

and

4oz _A0-a) {62_ (1+24(1—a)+)\16(1—a)>c%].

2 6 2 2

The inequality for |As| is obtained by the means of Lemma 2.1. An application
of Lemma 2.3 gives the inequality for |A3|. On the other hand, we find the upper
bound on |As — AAZ| from Lemma 2.2. O

Corollary 3.10. Let f € S, be given by (1.1), and let f~' be the inverse function
of f defined by (3.15). Then

8 8
|A2’ SF, ‘A3|<ﬁ(36_ﬂ_2)’
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and for A € C,
=7 24X =36+ 72|, |h(\) —1]>1,
Ay — A2 <
=3 h(N) =1 <1,
where
1 24 16
h(A) ==+ ——A—
) 3 w2 2

4. THE CLASS UCV («)

4.1. The logarithmic coefficients.

Theorem 4.1. Let f € UCV (o) (0 < v < 1) be given by (1.1) and let the coeffi-
cients of log (f(z)/z) be given by (1.7). Then

gl < 50

G (5 HR), 0sesiog,
|02 <
2 Ul=a), 1-= <a<l,
5l < NL%@+MO—aﬁ

32 3md

The bounds for |01 and |d2| are sharp.

Proof. If f € UCV (), then from (1.2), we know that zf" € S, («). Define the
function g by

g(z)=zf'(z) =2 + Zdnz” (z€U), (4.1)
n=2
and consider the logarithmic coefficients v, (n € N) defined by
9(2) _ 5N~ n
Fy(z) :=log = 221%2 (z€U). (4.2)
Therefore
1
"= §d2, (4.3)
1 1,
’72 = 5 <d3 - §d2> 5 (44)
1 1,
”)/3 = 5 d4 - d2d3 + §d2 . (45)

By equating the coefficients of 2" reciprocally in (4.1), we get na, = d,, for all
n € N. On the other hand, since g = zf" € S, (a), considering the logarithmic
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coefficients +,, given by (4.2) and using (1.8) — (1.10), the logarithmic coeflicients
of the function f € UCV («) are obtained equal to

61 = %’yl)
2= % (12 + 93) (4.6)
03 =7 (13 +3M72) -

By letting n = 1 in Theorem 3.1, we obtain

1 4(1— )
01| = = < —F—-
|01 2|71’— 2

Next, the upper bound of |d5| is obtained by Theorem 3.3 for u = —1/4. So we
get

8(1—a) (1 , 2(1—a) 2
—(§+—>, 0<a<l-—%

1 1 3m2 w2 — — 127
102 = 5 {72 + 777| <
i ! 41-a) 1-T<a<l
32 12 > :
Finally, for |d3],
1 2
05| = 77T gm0
< bl + 3 bl el
- 4 3
2
< 2(1 -« N 16 (1 — «) .

32 3
O

Corollary 4.2. Let f € UCV be given by (1.1) and let the coefficients of
log (f(2)/z) be given by (1.7). Then

2 2 1 4
0| < — 0o < — 03 < — + —.
| 1|_7r2’ |2|_37T2’ |3|_37r2+37r4

The bounds for |01 and |d2| are sharp.
Theorem 4.3. Let f e UCV () (0 < ae < 1) be given by (1.1) and let the coeffi-
cients of log (f(z)/z) be given by (1.7). Then

( 8(1—a) (1 2(1—a)(3X—1) 1 2

372 (5 - 2 ) J A< 37 36(1—a)’
2 4(1—a) 1 2 1 52
|52 - /\51’ < 372 ) 37 36(1—a) <A< 3t 36(1—a)’

8(1—a) (1 2(1—a)(3)—1) 1 572

L~ 3x2 (E 2 ) ) A2 3t 36(1—a)

1 2 1 T
If 5= 300y S A< 51 wpizay then

36(1—a) 3
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Furthermore, zf + 18(1 o < A< :1)) + W then
1 5 4(1—a)
5y — A2 S ) e
15 1‘+(3+36(1—a) )|1|— 372
Fach of these results is sharp.
Proof. From (4.6), for A € R, we get
1 1—3X\
Sy — N6 = = 2.
2 173 (72 + 1 71)
This implies that
1 3IN—1
[0 = A0t = S [ =i, pi= (4.7)
Using Theorem 3.3, it is obtained that
( 8(1-a) (1 2(1—a)(32—1) 1 2
372 <§ - 2 ) ) A< 37 36(1—a)’
41—« 71'2 7r2
|52 - )‘5%‘ B (37r2 )7 % T 36(1—a) SAS % + 36?1—04)’
8(1—a) (1 2(1—a)(3)\—1) 1 572
L 372 <§ - 2 > ) A2 3t 36(1—a)
OJ

Corollary 4.4. Let f € UCV be given by (1.1) and let the coefficients of
log (f(2)/z) be given by (1.7). Then

»

4 1 3A—1 1 T
52 (35— 57), A< 53— T
2 2 1 w2 1 572
|02 = AY| < § 522 5 SASs S
4 (1 3\—1 1 572
-2 (53— %57), A=23+ %
Flom<A<ie then
2 2 2
o= A2+ (A+ = — = =
02 = Adt] ( 18 )M 32
Furthermore, if%+%2§)\§§ 5 then

+
1 b5 2
2
|52—)\51’+(§+1—8—)\) ‘(51‘ —.
Each of these results is sharp.

Theorem 4.5. Let f € UCV (o) (0 < v < 1) be given by (1.1) and let the coeffi-
cients of log (f(2)/z) be given by (1.7). Then for X € C,

B 16 (1 — ) (BN — 1) — 72, ’w_g > 1.
‘(52—)\5%| <
4(1—a)

4(1-a)(3A=1) g’ <1

3m2 w2 3
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Corollary 4.6. Let f € UCV be given by (1.1) and let the coefficients of
log (f(2)/z) be given by (1.7). Then for X\ € C,

T R e
|6, — AOF| <
3%? 2(3;\2—1) 331

4.2. Second Hankel determinant.

Theorem 4.7. Let f € UCV (o) (0 < e < 1) be given by (1.1) and let the coeffi-
cients of log (f(2)/z) be given by (1.7). Then

20 (1 — )® N 64 (1 — )’
94 96

0105 — 03| <

Proof. From (4.6), Theorems 3.1, 3.7, and 3.3 for u = 1/4, we find

oisa =88] = g Cen—) + 3+ 3002 (e - )]
< %|7173—7§|+7—12|72|2+%|%\2 72—%7%
_ 2(1—a)’ N 2(1 —a)’ +64(1—04)3
- 4 974 976
. 20(1-a)®  64(1-a)
B 9t + 9n6
This completes the proof. O

Corollary 4.8. Let f € UCV be given by (1.1) and let the coefficients of
log (f(2)/z) be given by (1.7). Then

5 8
0105 — 02| < — 4+ —.
‘13 2|_97T4+97T6
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