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Abstract. When A ∈ B(H) and B ∈ B(K) are given, we denote by MC the

operator on the Hilbert space H ⊕ K of the form MC =

(
A C
0 B

)
. In this

paper, the closedness of ranges and left (resp. right) Drazin invertibility of
upper triangular operator matrices MC are investigated.

1. Introduction and preliminaries

Throughout this paper, let H and K be infinite-dimensional separable complex
Hilbert spaces and let B(H,K) denote the set of bounded linear operators from
H to K. If H = K, then B(H,H) will be written by B(H). For given A ∈ B(H),
B ∈ B(K), and C ∈ B(K,H), we denote by MC an operator acting on H⊕K of
the form

MC =

(
A C
0 B

)
. (1.1)

Various types of invertibility and regularity have been considered in literature of
an upper triangular operator matrix (1.1) as well as various types of spectra of
MC , where H,K are separable Hilbert or Banach spaces. One can see [1–8,14–18]
and the references therein for recent reviews on this topic. This paper is devoted
to the study the left and right Drazin invertibility of MC for some C ∈ B(K,H).

For A ∈ B(H), write N (A) for the kernel of A and R(A) for the range of A,
and the ascent a(A) and the descent d(A) of A are given by a(A) = inf{n ≥
0 : N (An) = N (An+1)} and d(A) = inf{n ≥ 0 : R(An) = R(An+1)}. Clearly,
a(A) = 0 if and only if A is injective, and d(A) = 0 if and only if A is surjective.
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If both a(A) and d(A) are finite, then A is said to be Drazin invertible, and its
Drazin inverse is denoted by AD. It follows from [13, Theorem 2.3] that AD is
unique and A has a unique decomposition A1 ⊕A2, where A1 is an invertible op-
erator and A2 is a nilpotent one. An operator A ∈ B(H) is left Drazin invertible
if a(A) < ∞ and R(Aa(A)+1) is closed. An operator A ∈ B(H) is right Drazin
invertible if d(A) < ∞ and R(Ad(A)) is closed. The nullity and the deficiency of
A are defined respectively by α(A) = dimN (A) and β(A) = dimK/R(A). Here
I denotes the identity operator in H.

A vast research can be found in literature devoted to the study of bounded
linear operators with closed range. Their significance stems from the many ap-
plications they have, for example, in the spectral study of differential operators
or in the context of perturbation theory, but also from the important role they
play when it comes to purely theoretical considerations. In this paper, we prove
the closedness of R(Mn

C) for n ∈ N which is used to give a sufficient conditions
for MC to be left (resp. right) Drazin invertible.

2. Closedness of range of the operator Mn
C

In the following section, we find the relationship of the closedness among the
ranges R(An), R(Bn) and R(Mn

C) for n ∈ N in the operator matrix Mn
C . We

begin with some lemmas.

Lemma 2.1 (see [10]). If A ∈ B(H), then the following statements hold:
(1) If D ∈ B(H), is finite rank, then R(A+D) is closed if and only if R(A)

is closed.
(2) If M and N are invertible operators, then R(MAN) is closed if and only

if R(A) is closed.
(3) If N is an invertible operator, then R(AN) = R(A).

Lemma 2.2 (see [10]). If A ∈ B(H,K), then the following statements are equiv-
alent:

(1) R(A) is closed.
(2) R(AA∗) is closed.
(3) R(A) = R(AA∗).
(4) R(A∗) is closed.
(5) R(A∗A) is closed.
(6) R(A∗) = R(A∗A).

Proposition 2.3. Let A ∈ B(H), B ∈ B(K) and C ∈ B(K,H) be given operators
such that R(An) is closed for any n ∈ N and β(An) = ∞. Then R(Mn

C) is closed.

Proof. For any n ∈ N, we have

Mn
C =

[
An S
0 Bn

]
:

[
H
K

]
−→

[
H
K

]
.
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Since β(An) = ∞, there exists an isometrically isomorphic linear operator
J : K → R(An)⊥. Define an operator S : K → H by

S :=

(
J
0

)
: K −→

(
R(An)⊥

R(An)

)
.

Let
(

xk

yk

)
k∈N

⊂ H⊕K such that Mn
C

(
xk

yk

)
−→

(
u
v

)
. Then Anxk+Syk → u

and Bnyk → v. We have Syk ∈ R(An)⊥. Then (Anxk + Syk)k∈N is a Cauchy
sequence in R(An) +R(An)⊥. Thus (Anxk)k∈N and (Syk)k∈N = (Jyk)k∈N are two
Cauchy sequences. From this we deduce that (yk)k∈N is a Cauchy sequence.
Let yk → y0 and let Anxk → Anx0. Then u = Anx0 + Sy0 and v = Bny0.
Hence

(
u
v

)
= Mn

C

(
x0

y0

)
∈ R(Mn

C), which means that R(Mn
C) is closed. □

Proposition 2.4. Let A ∈ B(H), B ∈ B(K) and C ∈ B(K,H) be given operators
such that R(Bn) is closed for any n ∈ N and α(Bn) = ∞. Then R(Mn

C) is closed.

Proof. We consider the operator matrix

M =

(
B∗ C∗

0 A∗

)
. (2.1)

Since α(Bn) = β((B∗)n) = ∞ and R(Bn) is closed, then by Proposition 2.3
R(Mn) is closed. On the other hand, we have

M∗
C =

(
A∗ 0
C∗ B∗

)
= TMT,

with T =

(
0 I
I 0

)
and T−1 = T.

Hence
(M∗

C)
n = (TMT )(TMT ) . . . (TMT ) = TMnT.

We conclude that R((M∗
C)

n) is closed. Thus R(Mn
C) is closed. □

3. Left and right Drazin invertibility of MC

Theorem 3.1. Let A ∈ B(H) be left Drazin invertible and let B ∈ B(K) such
that

(i) β(Ap+1) = ∞, with a(A) = p,
(ii) there exists C ∈ B(K,H) such that N (C) ⊆ N (B)⊥ and R(C) ⊆ (R(A)+

N (Ap))⊥.
Then MC is left Drazin invertible.

Proof. Since A is left Drazin invertible, then by Proposition 2.3 it follows that
R(Mp+1

C ) is closed. Now, we prove that a(MC) < ∞. It is enough to prove that
N (Mp+1

C ) ⊆ N (Mp
C). Let

(
x
y

)
∈ N (Mp+1

C ). Then{
Ap+1x+ ApCy + Ap−1CBy + · · ·+ ACBp−1y + CBpy = 0,
Bp+1y = 0,

(3.1)
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Thus
Ap+1x+ApCy +Ap−1CBy + · · ·+ACBp−1y = −CBpy ∈ R(A) ∩

[
(R(A) +N (Ap))⊥

]
⊆ R(A) ∩R(A)⊥ = {0}.

Hence{
Ap+1x+ApCy +Ap−1CBy + · · ·+ACBp−1y = 0,
Bp+1y = 0 and CBpy = 0, then Bpy ∈ N (B) ∩N (C) ⊆ N (B) ∩N (B)⊥ = {0}.

(3.2)
Thus Bpy = 0. From the first equality in (3.2) we get
Apx+ Ap−1Cy + Ap−2CBy + · · ·+ CBp−1y ∈ N (A).
Let Apx+ Ap−1Cy + Ap−2CBy + · · ·+ CBp−1y = x1, with x1 ∈ N (A). Then{

Ap+1x+ ApCy + Ap−1CBy + · · ·+ ACBp−2y − x1 + CBp−1y = 0,
Bpy = 0.

(3.3)

It induces that Apx+Ap−1Cy +Ap−2CBy + · · ·+ACBp−2y − x1 = −CBp−1y ∈
[R(A) +N (A)]∩[R(A) +N (Ap)]⊥ ⊆ [R(A) +N (Ap)]∩[R(A) +N (Ap)]⊥ = {0}.
This implies that Apx+Ap−1Cy+Ap−2CBy+· · ·+ACBp−2y−x1 = −CBp−1y = 0.
Therefore Apx+ Ap−1Cy + Ap−2CBy + · · ·+ ACBp−2y = x1 and Bp−1y = 0.
Since Apx+ Ap−1Cy + Ap−2CBy + · · ·+ ACBp−2y = x1, then
Ap−1x+ Ap−2Cy + Ap−3CBy + · · ·+ CBp−2y ∈ N (A2).
Let Ap−1x+ Ap−2Cy + Ap−3CBy + · · ·+ CBp−2y = x2, with x2 ∈ N (A2). Then{

Ap−1x+ Ap−2Cy + Ap−3CBy + · · ·+ ACBp−3y − x2 + CBp−2y = 0,
Bp−1y = 0.

(3.4)

If we continue this process, then we gets{
A2x+ ACy − xp−1 + CBy = 0,
B2y = 0,

(3.5)

where xp−1 ∈ N (Ap−1). Then there exists xp ∈ N (Ap) such that{
Ax+ Cy − xp = 0,
By = 0.

(3.6)

Thus Ax−xp = −Cy ∈ [R(A) +N (Ap)]∩[R(A) +N (Ap)]⊥ = {0}. It follows that
x ∈ N (Ap+1) = N (Ap) and y = 0, so

(
x
y

)
∈ N (Mp

C). Since N (Mp
C) ⊆ N (Mp+1

C )
we get a(MC) ≤ p. □

We know that the properties to be right (resp. left) Drazin invertible are dual
each other. Then we have the following result.

Theorem 3.2. Let A ∈ B(H) and let B ∈ B(K) be right Drazin invertible such
that

(i) α(Bk) = ∞ with d(B) = k,

(ii) there exists C ∈ B(K,H) such that N (A∗) ⊆ R(C) and (N (B)∩R(Bk))⊥ ⊆
N (C).

Then MC is right Drazin invertible.



LEFT AND RIGHT DRAZIN INVERTIBLITY OF MC 35

Proof. Since B is right Drazin invertible, then B∗ is left Drazin invertible; so by
Theorem 3.1, there exists C ∈ B(K,H) such that

M =

(
B∗ C∗

0 A∗

)
is left Drazin invertible.

By Proposition 2.4 we have R(Mk
C) is closed since R(Mk) is closed.

Let now k = a(M) and let x ∈ N ((M∗
C)

k). Then TMkTx = 0. It follows
that MkTx = 0. Hence T (N ((M∗

C)
k)) ⊆ N (Mk). On the other hand, if x ∈

N (Mk), then we obtain Tx ∈ N ((M∗
C)

k). Therefore T (Tx) ∈ T (N ((M∗
C)

k)).
That is x ∈ T (N ((M∗

C)
k)), which implies that T (N ((M∗

C)
k)) = N (Mk). Since

N (Mk) = N (Mk+1), then T (N ((M∗
C)

k)) = T (N ((M∗
C)

k+1)). Thus N ((M∗
C)

k) =
N ((M∗

C)
k+1). It shows that a(M∗

C) ≤ k < ∞. Hence d(MC) < ∞, and MC is a
right Drazin invertible operator. □

In the next result, we present the right Drazin invertibility of MC via the
injectivity of A.

Theorem 3.3. Let A ∈ B(H) and let B ∈ B(K) be right Drazin invertible such
that

(i) A is injective and R(A) is closed
(ii) there exists C ∈ B(K,H) such that N (A∗) ⊆ R(C) and (N (B)∩R(Bk))⊥ ⊆

N (C) with d(B) = k.
Then MC is right Drazin invertible.

Proof. Since B is right Drazin invertible, where d(B) = k and C ∈ B(K,H)
satisfies (ii), it follows that d(MC) = k. Now, consider the operator M given in
(2.1). If A is injective with closed range, then A∗ is surjective and so is (A∗)k.
So, R(Mk) = R((B∗)k)⊕H. Thus R(Mk) is closed, and hence R(Mk

C) is closed.
We conclude that MC is a right Drazin invertible operator. □

by taking adjoint in Theorem 3.3, we have the following result.

Theorem 3.4. Let A ∈ B(H) be left Drazin invertible and let B ∈ B(K) such
that

(i) B is surjective,
(ii) there exists C ∈ B(K,H) such that N (C) ⊆ N (B)⊥ and R(C) ⊆ (R(A)+

N (Ak))⊥.
Then MC is left Drazin invertible.

We end the section with an example illustrating Theorems 3.1–3.3.

Example 3.5. Let A ∈ B(H) be a left Drazin invertibe operator with a(A) = p
defined by A = A1⊕0, where A1 is a left invertible operator and let B = A∗. Then
B = B1⊕ 0 with B1 is a right invettible operator. Let {fi}∞i=1 be an orthonormal
basis of R(An)⊥ for n ≥ p. Since R(An) is closed then β(An) = dimR(An)⊥.
From dimR(An)⊥ = ∞ we have dim(R(An) + N (Ap))⊥ = ∞. On the other
hand, β(An) = dimN ((A∗)n) = dimN (Bn) = ∞. There exist an isometry T
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from N (Bn) into (R(An) +N (Ap))⊥. Define C : K → H by

C =

(
T 0
0 0

)
:

(
N (Bn)
N (Bn)⊥

)
−→

(
(R(An) +N (Ap))⊥

R(An) +N (Ap)

)
.

In this case, the upper-triangular operator matrix MC has the operator matrix

MC =


A1 0 T 0
0 0 0 0
0 0 B1 0
0 0 0 0

 .

Observe that N (C) = {0} ⊕ N (Bn)⊥ ∼ N (Bn)⊥ ⊆ N (B)⊥ and R(C) ⊆
(R(An)+N (Ap))⊥. Hence a(MC) ≤ p, and MC is a left Drazin invertible operator.

4. Application to a spectral boundary value matrix problem

This section is devoted to the study of boundary value problems described by
an upper triangular operator matrices (2 × 2) acting in Hilbert spaces with a
complex spectral parameter λ,

(P)

{
(UL − λMC)w = F,

Γw = Φ,

where F and Φ are given and UL is the matrix operator defined on H⊕K by

UL =

(
U1 L
0 U2

)
,

with a given linear operator L : K −→ H. We first define the boundary value
problem (P) by ordered pairs (UL,MC) of an upper triangular operator matrix
MC , where UL is right Drazin invertible, and we construct the adapted boundary
operator Γ of UL. We prove the existence of a unique solution of (P), and we give
an explicit expression for this solution. Before this down, we define the boundary
operator for right Drazin invertible operator.

If Ard is the right Drazin inverse of the operator A, then
R(Am) = R(Ard)⊕N (Am+1), with d(A) = m < ∞. (4.1)

Definition 4.1 (see [12]). The operator Γ : H → E is said to be an initial
boundary operator for a right Drazin invertible operator A corresponding to its
right Drazin inverse Ard if

(i) ΓArd = 0 on H,
(ii) there exists an operator Π : E → H such that ΓΠ = IE and R(Π) =

N (Am+1) with m = d(A) < ∞.
Proposition 4.2 (see [11]). Let A,B ∈ B(H). Then (I − λAB) is invertible if
and only if (I − λBA) is invertible for all λ ̸= 0.

In this case, we have
(I − λBA)−1 = I + λB(I − λAB)−1A (4.2)

and
(I − λAB)−1 = I + λA(I − λBA)−1B. (4.3)
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Corollary 4.3. Let A, B ∈ B(H). If λ−1 ∈ ρ(AB), then
(I − λAB)−1A = A(I − λBA)−1.

In the following proposition, we construct the boundary operator for a Drazin
invertible upper triangular matrix operator.

Proposition 4.4. Let UL =

(
U1 L
0 U2

)
be defined on H ⊕ K. Assume that

U rd
1 and U rd

2 are right Drazin inverses of U1 and U2, respectively. Also, Γ1 and
Γ2 are boundary operators for U1 and U2 with the boundary spaces E and Z,
respectively. If N (Um+1

2 ) ⊂ N (Lm+1) with m = max(d(U1), d(U2)), then the

operator Γ =

(
Γ1 0
0 Γ2

)
from H⊕K into E⊕Z is a boundary operator for UL.

Proof. We observe that Γ1U
rd
1 = 0, Γ2U

rd
2 = 0, and there exist Π1 : E −→ H

and Π2 : Z −→ K such that Γ1Π1 = IE, R(Π1) = N (Um+1
1 ) and Γ2Π2 =

IZ , R(Π2) = N (Um+1
2 ). Denote by Π =

(
Π1 0
0 Π2

)
: E ⊕ Z −→ X ⊕ Y.

Since U1 and U2 are right Drzain invertible, then so is UL. Let U rd
L the right Drazin

inverse of UL. Then R(U rd
L ) = R(U rd

1 ) ⊕ R(U rd
2 ) ⊂ N (Γ1) ⊕ N (Γ2) = N (Γ).

Hence ΓU rd
L = 0 and ΓΠ = IE⊕Z .

The condition N (Um+1
2 ) ⊂ N (Lm+1) implies that R(Π) = N (Um+1

L ). □
Let A and B be given linear operators on Hilbert spaces H and K, and consider

the operator MC defined on H⊕K by

MC =

(
A C
0 B

)
,

where C is a linear operator from H into K. According to Proposition 4.4, we
define the following spectral boundary value matrix problem for unknown w ∈
R(Um

1 )×R(Um
2 ) by

(P)

{
(UL − λMC)w = F,

Γw = Φ,

where F ∈ R(Um
1 )×R(Um

2 ), Φ ∈ E × Z and λ ∈ C is a spectral parameter. We
denote Rλ[U

rd
1 A] = (IH − λU rd

1 A)−1 and Rλ[U
rd
2 A] = (IK − λU rd

2 B)−1, U rd
1 and

U rd
2 are right Drazin inverses of U1 and U2, respectively.
Our purpose is to establish the existence and uniqueness of solutions for the

boundary value problem (P). In the theorem below, we give an explicit expression
for the solution of the problem (P).

Theorem 4.5. If λ−1 ∈ ρ(U rd
1 A) ∩ ρ(U rd

2 B), then the boundary value problem
(P) is uniquely solvable for any F ∈ H × K and Φ ∈ E × Z and the solution is
given by

wF,Φ
λ = GL,C(U

rd
L F +ΠΦ),

where
U rd
L =

(
U rd
1 0
0 U rd

2

)



38 K. MILOUD HOCINE

and
GL,C =

(
Rλ[U

rd
1 A] −U rd

1 Rλ[U
rd
1 A](L− λC)Rλ[U

rd
2 B]

0 Rλ[U
rd
2 B]

)
.

Proof. We show that (UL − λMC)w
F,Φ
λ = F . We have

(UL − λMC)w
F,Φ
λ = (UL − λMC)GL,CU

D
L F + (UL − λMC)GL,CΠΦ.

Then
(UL − λMC)GL,CU

rd
L F =

= (UL − λMC)

(
Rλ[U

rd
1 A] −U rd

1 Rλ[U
rd
1 A](L− λC)Rλ[U

rd
2 B]

0 Rλ[U
rd
2 B]

)(
U rd
1 f1

U rd
2 f2

)
=

(
(U1 − λA) (L− λC)

0 (U2 − λB)

)
×
(

Rλ[U
rd
1 A]U rd

1 f1 − U rd
1 Rλ[U

rd
1 A](L− λC)Rλ[U

rd
2 B]U rd

2 f2
Rλ[U

rd
2 B]U rd

2 f2

)
=

(
(U1 − λA)U rd

1 Rλ[AU
rd
1 ]f1

(U2 − λB)U rd
2 Rλ[BU

rd
2 ]f2

)
= F,

and
(UL − λMC)GL,CΠΦ =

=

 (U1 − λA)[Rλ[U
rd
1 A]Π1φ1 − U rd

1 Rλ[U
rd
1 A](L− λC)Rλ[U

rd
2 B]Π2φ2]

+(L− λC)Rλ[U
rd
2 B]Π2φ2

(U2 − λB)Rλ[U
rd
2 B]Π2φ2


=

(
(U1 − λA)Rλ[U

rd
1 A]Π1φ1

(U2 − λB)Rλ[U
rd
2 B]Π2φ2

)
=

(
(U1 − λA)[IH + λU rd

1 Rλ[AU
rd
1 ]A]Π1φ1

(U2 − λB)[IK + λU rd
2 Rλ[BU

rd
2 ]B]Π2φ2

)
=

(
(U1 − λA)Π1φ1 + λAΠ1φ1

(U2 − λB)Π2φ2 + λBΠ2φ2

)
=

(
0
0

)
,

since R(Π1) = N (Um+1
1 ) and R(Π2) = N (Um+1

2 ).
Using the fact that Γ1U

rd
1 = 0 and Γ2U

rd
2 = 0, we get

ΓwF,Φ
λ = ΓGL,C(U

rd
L F +ΠΦ)

=

(
Γ1 0
0 Γ2

)(
Rλ[U

rd
1 A]U rd

1 f1 − U rd
1 Rλ[U

rd
1 A](L− λC)Rλ[U

rd
2 B]U rd

2 f2
Rλ[U

rd
2 B]U rd

2 f2

)
+

(
Γ1 0
0 Γ2

)(
Rλ[U

rd
1 A]Π1φ1 − U rd

1 Rλ[U
rd
1 A](L− λC)Rλ[U

rd
2 B]Π2φ2

Rλ[U
rd
2 B]Π2φ2

)

=

(
Γ1Rλ[U

rd
1 A]Π1φ1 − Γ1U

rd
1 Rλ[U

rd
1 A](L− λC)Rλ[U

rd
2 B]Π2φ2

Γ2Rλ[U
rd
2 B]Π2φ2

)

=

(
Γ1[IH + λU rd

1 Rλ[AU
rd
1 ]A]Π1φ1

Γ2[IK + λU rd
2 Rλ[BU

rd
2 ]B]Π2φ2

)

=

(
Γ1Π1φ1

Γ2Π2φ2

)
= Φ.
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The uniqueness of the solution of (P) follows from standard arguments. That is, if

w1, w2 ∈ R(Um
1 ) × R(Um

2 ) are two solutions of (P), then w0 = w1 − w2 =

(
u0
v0

)
=(

U rd
1 f0 +Π1φ0

U rd
2 g0 +Π2ψ0

)
for (f0, g0) ∈ R(Um

1 )×R(Um
2 ), φ0 ∈ E and ψ0 ∈ Z. Thus,

{
(UL − λMC)w0 = 0,

Γw0 = 0.

Since Γ1U
rd
1 = 0,Γ2U

rd
2 = 0 and ΓΠ = IE⊕Z , we deduce that

(
φ0

ψ0

)
=

(
0
0

)
. Then

u0 = U rd
1 f0 and v0 = U rd

2 g0. So,

0 = (UL − λMC)w0 =

(
(U1 − λA) (L− λC)

0 (U2 − λB)

)(
U rd
1 f0

U rd
2 g0

)
=

(
(U1 − λA)U rd

1 f0 + (L− λC)U rd
2 g0

(U2 − λB)U rd
2 g0

)
.

Then, f0 = g0 = 0, since λ−1 ∈ ρ(U rd
1 A)∩ρ(U rd

2 B). Hence w1 = w2 and the uniqueness
is proved. □
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