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COMPLEX INTERPOLATION OF SOME BANACH SPACES
INCLUDING MORREY SPACES

NOUFFOU DIARRA1* AND IBRAHIM FOFANA1

Communicated by H.R. Ebrahimi Vishki

Abstract. Let 1 ≤ q ≤ α < ∞. The sets
{
(Lq, lp)α(Rd) : α ≤ p ≤ ∞

}
and{

F (q, p, α)(Rd) : α ≤ p ≤ ∞
}

are two nondecreasing families of Banach spaces
such that, for both, the Lebsegue space Lα(Rd) is the minimal element and
the Morrey space Mα

q (Rd) is the maximal element. It is also known that for
1 < q ≤ α ≤ p ≤ ∞, (Lq, lp)α(Rd) has a predual space H(q′, p′, α′)(Rd), which
is also its Köthe dual space when α < p. In this paper, we obtain complex
interpolation theorems in the above mentioned three families of Banach spaces.
Our results extend analogous ones recently obtained for Morrey spaces and
their preduals.

1. Introduction and main results

For 1 ≤ q ≤ α ≤ ∞, the Morrey space Mα
q = Mα

q (Rd), introduced in 1938 by
Morrey [12] in connexion with regularity problems of solutions to partial differ-
ential equations, is defined as the set of all elements f of Lq

loc(Rd) for which

‖f‖Mα
q
= sup

x∈Rd, r>0

rd(
1
α
− 1

q )
(∫

Q(x,r)

|f(y)|qdy
) 1

q

< ∞

with

Q(x, r) =
d∏

j=1

[
xj −

r

2
, xj +

r

2

)
, x = (x1, x2, . . . , xd) ∈ Rd and 0 < r < ∞.
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Note that if q = α, then Mα
q coincides with the classical Lebesgue space

Lα = Lα(Rd). However Mα
q is strictly larger than Lα when q < α.

For 1 ≤ q ≤ α ≤ p ≤ ∞, the spaces (Lq, lp)α and F (q, p, α) (see Section
2 for their definitions) have been introduced since 1988 and 2015, respectively,
[6, 8]. They arise naturally in the study of Fourier multipliers and boundedness
properties of Riesz potential operators.

It is well known that, if α belongs to {q, p}, then both (Lq, lp)α and F (q, p, α)
coincide with the Lebesgue space Lα, and when p = ∞, they coincide with the
Morrey space Mα

q . However, if q < α < p, then the following strict inclusions
hold:

Lα ⊊ F (q, p, α) ⊊ (Lq, lp)α ⊊Mα
q .

Let us recall that, for 1 < q ≤ α ≤ p ≤ ∞, a predual space of (Lq, lp)α denoted
by H(q′, p′, α′) (see Section 2 for its definition) has been described by Feichtinger
and Feuto [5], where for 1 ≤ s ≤ ∞ , s′ denotes the conjugate exponent of
s, 1

s′
= 1 − 1

s
with the convention 1

∞ = 0. In [4], we proved that H(q′, 1, α′)

coincides with the so-called block space Bα′

q′ defined in [2] and which represents a
predual space of the Morrey space Mα

q .
Many classical results for Lebesgue and Morrey spaces have been obtained in

the framework of the spaces (Lq, lp)α and F (q, p, α) (see [4, 8] and the references
therein). Although the complex interpolation spaces of Lebesgue and Morrey
spaces and their preduals are known, those of (Lq, lp)α-spaces, F (q, p, α)-spaces,
and H(q′, p′, α′)-spaces are still unknown when 1 < q < α < p < ∞.

Note that the interpolation theory is a very useful tool in the study of bound-
edness properties of operators in various spaces.

The main purpose of the present paper is to describe complex interpolation
spaces of (Lq, lp)α-spaces, F (q, p, α)-spaces, and H(q′, p′, α′)-spaces. In doing so,
we will use some properties of Banach lattices, which have been shown to be
useful in the description of complex interpolation spaces (see [10, 14, 17]).

Let us recall some recent results about the interpolation of Morrey spaces. For
instance, as far as Calderón’s first and second complex interpolation functors
(Y0, Y1) 7→ [Y0, Y1]θ and (Y0, Y1) 7→ [Y0, Y1]

θ (see [3] for their definitions) are
concerned, the following description of interpolations spaces of Morrey spaces
and their preduals are known.

Let 0 < θ < 1, 1 ≤ qj ≤ αj < ∞ for j in {0, 1}, q0 6= q1, and q0α1 = α0q1 .
Define

1

q
=

1− θ

q0
+

θ

q1
and 1

α
=

1− θ

α0

+
θ

α1

.

In 2014, Lemarié-Rieusset [11] proved that[
Mα0

q0
,Mα1

q1

]θ
= Mα

q .

Later on, in 2020, Hakim [9] showed that[
Mα0

q0
,Mα1

q1

]
θ
=

{
f ∈ Mα

q : lim
n→∞

∥∥∥f − fχ{ 1
n
≤|f |≤n}

∥∥∥
Mα

q

= 0

}
.
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If in addition 1 < qj for j in {0, 1}, then it is true that[
M̊α0

q0
,M̊α1

q1

]
θ
=
[
M̊α0

q0
,Mα1

q1

]
θ
=
[
Mα0

q0
,M̊α1

q1

]
θ
= M̊α

q ,

where M̊v
u denotes the closure in Mv

u of the set C∞
c = C∞

c (Rd) of all infinitely
differentiable and compactly supported functions on Rd (see [15]). Furthermore,
Yuan [16] proved that [

Bα′
0

q′0
,Bα′

1

q′1

]
θ
=
[
Bα′

0

q′0
,Bα′

1

q′1

]θ
= Bα′

q′ .

In this paper, we are interested in the description of Calderón’s, first, and
second, complex interpolation spaces [X0, X1]θ and [X0, X1]

θ, where 0 < θ < 1
and the spaces Xj (j = 0, 1) are both in {(Lq, lp)α, 1 ≤ q ≤ α ≤ p ≤ ∞}, in
{F (q, p, α), 1 ≤ q ≤ α ≤ p ≤ ∞}, or in {H(q′, p′, α′), 1 < q ≤ α ≤ p ≤ ∞}.

Our main results are the following theorems, which extend the above results.
Theorem 1.1. Let us assume the following hypotheses:

(i) 1 ≤ qj ≤ αj ≤ pj ≤ ∞ with αj < ∞ for j in {0, 1} and q0 6= q1,
(ii) α0

α1
= q0

q1
= p0

p1
,

(iii) 0 < θ < 1 , 1
q
= 1−θ

q0
+ θ

q1
, 1

α
= 1−θ

α0
+ θ

α1
and 1

p
= 1−θ

p0
+ θ

p1
,

(iv)
X0, X1, X

 is equal to
(Lq0 , lp0)α0 , (Lq1 , lp1)α1 , (Lq, lp)α

 orF (q0, p0, α0), F (q1, p1, α1), F (q, p, α),
.

Then
[X0, X1]θ =

{
f ∈ X : lim

n→∞

∥∥∥fχRd\{ 1
n
<|f |<n}

∥∥∥
X
= 0
}
.

Theorem 1.2. Let us assume that the hypotheses (i), (iii), and (iv) of Theorem
1.1 are satisfied and that α0

α1
= q0

q1
≤ p0

p1
. Then[

X̊0 , X̊1

]
θ
=
[
X̊0 , X1

]
θ
=
[
X0 , X̊1

]
θ
= X̊,

where Y̊ denotes the closure in Y of C∞
c .

From Theorems 1.1 and 1.2, it is clear that if X is (Lq, lp)α or F (q, p, α), then
X̊ is included in Ẍ =

{
f ∈ X : lim

n→∞

∥∥∥fχRd\{ 1
n
<|f |<n}

∥∥∥
X
= 0
}

. It is worth noting
that the inclusions X̊ ⊂ Ẍ ⊂ X may be strict (see Proposition 3.15).
Theorem 1.3. Let us assume the following hypotheses:

(i) 1 < qj ≤ αj < pj ≤ ∞ for j in {0, 1} and q0 6= q1,
(ii) α0

α1
= q0

q1
≤ p0

p1
,

(iii) 0 < θ < 1 , 1
q
= 1−θ

q0
+ θ

q1
, 1

α
= 1−θ

α0
+ θ

α1
and 1

p
= 1−θ

p0
+ θ

p1
.

Then
[H(q′0, p

′
0, α

′
0),H(q′1, p

′
1, α

′
1)]θ = [H(q′0, p

′
0, α

′
0),H(q′1, p

′
1, α

′
1)]

θ
= H(q′, p′, α′).

Theorem 1.4. Keep the same assumptions as in Theorem 1.3. Then
[(Lq0 , lp0)α0 , (Lq1 , lp1)α1 ]θ = (Lq, lp)α.
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The remainder of this paper is organized as follows. Section 2 is dedicated to
Definitions. In Section 3, we prove some complementary results on normed Köthe
spaces and recall some useful properties of Calderón product of Banach lattices
and Calderón’s complex interpolation functors. We also prove some auxiliary
results on (Lq, lp)α-spaces, F (q, p, α)-spaces, and H(q′, p′, α′)-spaces. Section 4 is
devoted to the proofs of our main results.

2. Definitions

Let L0 = L0(Rd) denote the set of equivalence classes (modulo equality almost
everywhere) of measurable functions on Rd. Moreover, |A| and χA stand for
the Lebesgue measure and the characteristic function of the subset A of Rd.
For 1 ≤ q ≤ ∞ , ‖ · ‖q denotes the usual norm of the classical Lebesgue space
Lq = Lq(Rd).

Notation 2.1. Let r be an element of (0,∞). We set

• Irk =
d∏

j=1

[kjr, (kj + 1)r) , k = (k1, k2, . . . , kd) ∈ Zd,

• Q =
{
Q(x, r) : (r, x) ∈ (0,∞)× Rd

}
,

• P = {{Qi}i∈I ⊂ Q : I is countable and Qi ∩Qj = ∅ if i 6= j}.

Definition 2.2. Let us assume that 1 ≤ q, p, α ≤ ∞.
(1) (Lq, lp)α = (Lq, lp)α(Rd) = {f ∈ L0 : ‖f‖q,p,α < ∞},
where

||f ||q,p,α = sup
r>0

rd(
1
α
− 1

q )
r||f ||q,p (2.1)

with

r‖f‖q,p =



(∑
k∈Zd

‖fχIrk
‖pq

) 1
p

if p < ∞,

sup
k∈Zd

‖fχIrk
‖q if p = ∞ .

(2) F (q, p, α) = F (q, p, α)(Rd) = {f ∈ L0 : ‖f‖F (q,p,α) < ∞},
where

‖f‖F (q,p,α) =


sup

{Qi}∈P

[∑
i∈I

(
|Qi|

1
α
− 1

q ‖fχQi
‖q
)p] 1

p

if p < ∞,

sup
Q∈Q

|Q|
1
α
− 1

q ‖fχQ‖q if p = ∞ .

(2.2)

For 1 ≤ q ≤ α ≤ ∞, it is noted in [7, 8] that {(Lq, lp)α : α ≤ p ≤ ∞} and
{F (q, p, α) : α ≤ p ≤ ∞} are two nondecreasing families (with respect to inclu-
sion) of Banach spaces such that

• F (q, p, α) = (Lq, lp)α = {0} if α /∈ [q, p],
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• F (q, p, α) = (Lq, lp)α = Lα if α ∈ {q, p},
• F (q,∞, α) = (Lq, l∞)α = Mα

q ,
• if q < α < p < ∞, then

Lα ⊊ F (q, p, α) ⊊ (Lq, lp)α ⊊Mα
q . (2.3)

We recall below the definition of Wiener amalgam spaces.

Definition 2.3. (1) The Wiener amalgam space (Lq, lp) (1 ≤ q, p ≤ ∞) is
defined by

(Lq, lp) = (Lq, lp)(Rd) =
{
f ∈ L0(Rd) : 1‖f‖q,p < ∞

}
.

(2) For 1 ≤ q ≤ ∞, (Lq, c0) =
{
f ∈ (Lq, l∞)(Rd) : lim|k|→∞ ‖fχI1k

‖q = 0
}

.

It is well known that for 1 ≤ q, p ≤ ∞ , ((Lq, lp), 1‖ · ‖q,p) is a Banach space in
which, when 1 ≤ q ≤ α ≤ p ≤ ∞, (Lq, lp)α) and therefore F (q, p, α) is included
(see [7] and (2.3)).

Definition 2.4. Let us assume that 1 ≤ q ≤ α ≤ p ≤ ∞.
(1) For α < ∞, the dilation operator St

(α)
ρ is an isometric operator defined

by

St(α)ρ f = ρ−
d
αf
(
ρ−1.

)
, f ∈ L0, 0 < ρ < ∞.

(2) A sequence {(cn, ρn, fn)}n≥1 of elements of C× (0,∞)× (Lq′ , lp
′
) is called

an h-decomposition of an element f of L0 if

1‖fn‖q′,p′ ≤ 1, n ≥ 1,∑
n≥1

|cn| < ∞,

f =
∑
n≥1

cnSt
(α′)
ρn fn in L0 .

(3) The space H(q′, p′, α′) = H(q′, p′, α′)(Rd) is defined as the set of all ele-
ments of L0 whose set of h-decompositions is nonvoid; in other words,

H(q′, p′, α′) = {f ∈ L0 : ‖f‖H(q′,p′,α′) < ∞}

with

‖f‖H(q′,p′,α′) = inf

{∑
n≥1

|cn|

}
,

where the infimum is taken over all h-decompositions of f with the con-
vention inf ∅ = ∞.
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3. Preliminaries

3.1. Normed Köthe spaces. We denote by L0
+ the set of all nonnegative ele-

ments of L0. Following Zaanen [18], we adopt the definitions below.

Definition 3.1. (1) A function norm on Rd is a map σ of L0
+ into [0,∞] such

that, for any elements f and g of L0
+ and any real number a ≥ 0, we have

(i) σ(f) = 0 ⇐⇒ f = 0 in L0,
(ii) σ(af) = a σ(f),
(iii) σ(f + g) ≤ σ(f) + σ(g),
(iv) f ≤ g in L0 =⇒ σ(f) ≤ σ(g).

(2) If σ is a function norm on Rd, then Lσ = {f ∈ L0 : σ(|f |) < ∞} is called
the normed Köthe space on Rd defined by σ.

(3) A Banach function space on Rd is a Banach space (B, ‖ · ‖B) such that
(i) B is a linear subspace of L0,
(ii) there is a function norm σ on Rd such that B = Lσ and

‖f‖B = σ(|f |), f ∈ B.

Definition 3.2. Let L be a normed Köthe space on Rd defined by a function
norm σ and ‖ · ‖L = σ(| · |).

(1) An element f of L is of absolutely continuous norm whenever lim
n→∞

‖fn‖L =

0 for every sequence (fn)n≥1 in L such that
|f | ≥ fn ≥ fn+1 in L0, n ≥ 1,

lim
n→∞

fn = 0 in L0.

(2) L satisfies the Fatou property if for any sequence (fn)n≥1 of elements of L

.

[
0 ≤ fn ↑ f in L0 and sup

n≥1
‖fn‖L < ∞

]
=⇒

[
f ∈ L and lim

n→∞
‖fn‖L = ‖f‖L

]
.

(3) An order ideal in L is a linear subspace A of L such that[
g ∈ A, f ∈ L0 and |f | ≤ |g| in L0

]
=⇒ f ∈ A.

We adopt the following notations.

Notation 3.3. Let L be a normed Köthe space.
(1) La = {f ∈ L : f is of absolutely continuous norm}.
(2) L̈ =

{
f ∈ L : lim

n→∞

∥∥∥fχRd\{ 1
n
<|f |<n}

∥∥∥
L
= 0
}

.
(3) L̊ denotes the closure in L of the set C∞

c of all infinitely differentiable and
compactly supported functions on Rd.

We prove the following proposition.

Proposition 3.4. Let L be a normed Köthe space. Then
(1) La and L̈ are closed order ideals in L,
(2) La is included in L̈,
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(3) if E is a measurable subset of Rd such that χE is in L, then χE belongs
to L̈.

Proof. (1) • For La, the result is contained in [18, Theorem 3, § 72 ].
• It is easy to show that L̈ is an order ideal in L.
• It is proved in [9, Lemma 4.5] that M̈α

q is a closed subspace of Mα
q . We may

follow word for word the argumentation used there to show that L̈ is a closed
subspace of L.

(2) Let f be an element of La, and set, for any positive integer n, fn =
fχRd\{ 1

n
<|f |<n}.

• It is clear that fn (n ≥ 1) are in L and satisfy

|f | ≥ |fn| ≥ |fn+1| in L0, n ≥ 1.

• Set E =
{
x ∈ Rd : |f(x)| < ∞

}
.

Since f is in the normed Köthe space L,
∣∣Rd\E

∣∣ = 0 (see [18, Theorem 1, § 63]).
Let x be an element of E.

First case: f(x) = 0.
We have for any positive integer n, fn(x) = 0 and so lim

n→∞
fn(x) = 0.

Second case: 0 < |f(x)| < ∞.
There exists a positive integer nx such that 1

nx
< |f(x)| < nx, and therefore for

any positive integer n ≥ nx , fn(x) = 0 and so lim
n→∞

fn(x) = 0. Hence (|fn|)n≥1

converges to 0 in L0.
• From what proceeds and since f is in La , lim

n→∞
‖fn‖L = 0, and so f belongs to

L̈.
(3) Let E be a measurable subset of Rd such that χE belongs to L. We have

Rd\
{
1

n
< χE < n

}
= Rd\E, n ≥ 1,

and therefore
χE χRd\{ 1

n
<χE<n} = χEχRd\E = 0, n ≥ 1.

Consequently,
lim
n→∞

‖χE χRd\{ 1
n
<χE<n}‖L = 0.

This proves that χE belongs to L̈. □

The following result is a generalization of point b) of Proposition 4.6 in our
paper [4]. The proof is obtained by almost the same argumentation used there.

Proposition 3.5. Let us assume that L is a normed Köthe space, that 1 ≤ α < ∞,
and that the Lebesgue space Lα is continuously included in L. Then La is equal
to the closure in L of Lα, and therefore La = L̊.

Proof. • Let f be any element of La, and set
fn = sgn(f)min

{
|f |, nχQ(0,2n)

}
, n ≥ 1,



COMPLEX INTERPOLATION OF SOME BANACH SPACES 17

where

sgn(f)(x) =


f(x)
|f(x)| if f(x) 6= 0,

0 otherwise.
We have 

|fn| is in Lα and |fn| ≤ |f | in L0, n ≥ 1,

lim
n→∞

fn = f in L0.

Since f is of absolutely continuous norm in L, lim
n→∞

‖f − fn‖L = 0 (see [18,
Theorem 2 § 72 ]), and therefore f is in the closure Lα of Lα in L.
• Let f be any element of Lα and let {En}n≥1 be a nonincreasing sequence

of measurable subsets of Rd such that
∣∣∣∣∣⋂
n≥1

En

∣∣∣∣∣ = 0. It is clear that we can

apply the classical dominated convergence theorem for Lebesgue spaces to obtain
lim
n→∞

‖fχEn‖α = 0 and, since Lα is continuously embedded in L, lim
n→∞

‖fχEn‖L =

0. This shows that f is in La (see [18, Theorem 1, § 72 ]).
• We have proved that Lα ⊂ La ⊂ Lα.
Since La is closed in L (see Proposition 3.4), we obtain La = Lα. Therefore, since
C∞
c is dense in Lα and Lα is continuously embedded in L, we can conclude that

La = L̊. □
Let L be a normed Köthe space. The Köthe dual space (or associate space) L′

of L is defined as the set of all elements g of L0 such that

‖g‖L′ = sup

{∫
Rd

|g(x)f(x)| dx : f ∈ L and ‖f‖L ≤ 1

}
< ∞.

Note that L′ equipped with ‖ ·‖L′ is a Banach function space satisfying the Fatou
property (see [18, Theorem 1, § 68 ]).

For any elements f and g of L0 such that fg is in L1, we set

Tg(f) =

∫
Rd

f(x)g(x)dx.

It is known that g 7→ Tg is an isometric linear map of L′ into the topological dual
space L∗ of L (see [18, Theorem 2, § 69 ]). Therefore we shall look L′ as a closed
subspace of L∗ by identifying any element g of L′ with Tg.

3.2. Banach lattices. We recall the following definition from [10].

Definition 3.6. (1) A Banach space (B, ‖ · ‖B) is said to be a Banach lattice
of functions (or an ideal Banach lattice) on Rd whenever it is a linear
subspace of L0 and satisfies the following property:[
f ∈ L0, g ∈ B and |f | ≤ |g| in L0

]
=⇒ [ f ∈ B and ‖f‖B ≤ ‖g‖B ] .

(2) Let B be a Banach lattice of functions on Rd.
(a) An element f of B is of absolutely continuous norm whenever
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lim
n→∞

‖fχEn‖B = 0 for any nonincreasing sequence (En)n≥1 of measur-

able subsets of Rd such that
∣∣∣∣∣⋂
n≥1

En

∣∣∣∣∣ = 0.

(b) B is said to have an absolutely continuous norm whenever every ele-
ment of B is of absolutely continuous norm.

Remark 3.7. (1) It is easy to see that, every Banach function space on Rd is
a Banach lattice of functions on Rd, but the converse is not true.

(2) It is well known (see [18, Theorem 1, § 72 ]) that an element of a Banach
function space on Rd is of absolutely continuous norm in the Banach
lattice of functions sense (Definition 3.6) if and only if it is of absolutely
continuous norm in the Banach function space sense (Definition 3.2).

3.3. Calderón product and Calderón’s complex interpolation functors.
Let us assume that Y0 and Y1 are two Banach lattices of functions on Rd and
0 < θ < 1. The Calderón product Y 1−θ

0 Y θ
1 of Y0 and Y1 is defined by

Y 1−θ
0 Y θ

1 =
⋃

f0∈Y0, f1∈Y1

{
f : Rd → C : |f | ≤ |f0|1−θ|f1|θ in L0

}
,

and for any element f of Y 1−θ
0 Y θ

1 ,
‖f‖Y 1−θ

0 Y θ
1
:= inf

{
‖f0‖1−θ

Y0
‖f1‖θY1

: f0 ∈ Y0, f1 ∈ Y1 and |f | ≤ |f0|1−θ|f1|θ in L0
}
.

It is known that Y 1−θ
0 Y θ

1 equipped with the norm ‖ · ‖Y 1−θ
0 Y θ

1
is a Banach lattice

of functions on Rd.
We shall use the following well known results.

Proposition 3.8. (1) ([17]). We have

[Y0, Y1]θ = Y0 ∩ Y1
Y 1−θ
0 Y θ

1 . (3.1)

(2) ([10, Theorem IV.1.14,]). If Y 1−θ
0 Y θ

1 has an absolutely continuous norm,
then

[Y0, Y1]θ = Y 1−θ
0 Y θ

1 . (3.2)

Remark 3.9. If (h0, h1) is an element of Y0×Y1 such that h0 or h1 is of absolutely
continuous norm, then |h0|1−θ|h1|θ is of absolutely continuous norm in Y 1−θ

0 Y θ
1 .

Therefore, if Y0 or Y1 has an absolutely continuous norm, then Y 1−θ
0 Y θ

1 has an
absolutely continuous norm, and so (3.2) holds true (see the remark just after [10,
Theorem IV.1.14]).

Let us recall the following result on the relation between the Calderón product
of Banach function spaces and their Köthe dual spaces.

Proposition 3.10 ([14, Theorem 2.10 ]). If Y0 and Y1 are Banach function spaces
on Rd satisfying the Fatou property, then(

Y 1−θ
0 Y θ

1

)′
= (Y ′

0)
1−θ(Y ′

1)
θ.
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A particular case of [1, Theorem 4.5.1] reads as follows.

Proposition 3.11. If Y0 ∩ Y1 is dense in both Y0 and Y1 then
([Y0, Y1]θ)

∗ = [Y ∗
0 , Y

∗
1 ]

θ .

3.4. F (q, p, α), (Lq, lp)α, and H(q′, p′, α′) spaces. In this subsection, we assume
that 1 ≤ q ≤ α ≤ p ≤ ∞ unless otherwise specified. We note that the norms
(2.1) and (2.2) are very similar. In order to emphasize on this, let us adopt the
following notations:
• Pr =

{
Irk : k ∈ Zd

}
, r ∈ (0,∞),

• Pu = {Pr : r ∈ (0,∞)}.
Note that, for any positive real number r, Pr belongs to P and therefore Pu is a
subset of P .
For any element P = {Qi : i ∈ I} of P and any element f of L0, we set

‖f‖(P,q,p,α) =
∥∥∥{|Qi|

1
α
− 1

q ‖fχQi
‖q
}

i∈I

∥∥∥
lp

=



[∑
i∈I

(
|Qi|

1
α
− 1

q ‖fχQi
‖q
)p] 1

p

if p < ∞,

sup
i∈I

|Qi|
1
α
− 1

q ‖fχQi
‖q if p = ∞ .

It is easy to see that for any element f of L0,
||f ||q,p,α = sup

P∈Pu

‖f‖(P,q,p,α) = sup
r>0

‖f‖(Pr,q,p,α)

and
‖f‖F (q,p,α) = sup

P∈P
‖f‖(P,q,p,α) .

Throughout the remainder of this subsection, X denotes the space (Lq, lp)α or
the space F (q, p, α), and ‖ · ‖X is its norm. We shall now give some auxiliary
results on the space X.

Proposition 3.12. X is a Banach function space on Rd satisfying the Fatou
property.
Proof. If α ∈ {q, p}, then X = Lα, and so the result is well known (see [18]).

We suppose that q < α < p.
(1) We already know that X is a Banach space.
(2) We take S = Pu if X = (Lq, lp)α and S = P if X = F (q, p, α).

(a) Let f and g be two elements of L0 such that |f | ≤ |g| and g belongs to X.
For any element P = {Qi : i ∈ I} of S, we have

|Qi|
1
α
− 1

q ‖fχQi
‖q ≤ |Qi|

1
α
− 1

q ‖gχQi
‖q, i ∈ I.

Therefore
‖f‖(P,q,p,α) ≤ ‖g‖(P,q,p,α).
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So
sup
P∈S

‖f‖(P,q,p,α) ≤ sup
P∈S

‖g‖(P,q,p,α).

Thus we obtain
‖f‖X ≤ ‖g‖X < ∞.

(b) Let (fn)n≥1 be a sequence of nonnegative elements of X such that (fn)n≥1 ↑
f and sup

n≥1
‖fn‖X < ∞. We have

fn ≤ fn+1 ≤ f in L0, n ≥ 1.

Therefore (‖fn‖X)n≥1 is a nondecreasing sequence and satisfies
lim
n→∞

‖fn‖X = sup
n≥1

‖fn‖X ≤ ‖f‖X . (3.3)

Let us consider a real number t such that 0 ≤ t < ‖f‖X and an element
P = {Qi : i ∈ I} of S satisfying ‖f‖(P,q,p,α) > t. There exists a finite subset J of
I such that 

[∑
i∈J

(
|Qi|

1
α
− 1

q ‖fχQi
‖q
)p] 1

p

> t if p < ∞,

sup
i∈J

|Qi|
1
α
− 1

q ‖fχQi
‖q > t if p = ∞ .

Let m be the number of elements of J and set

a =



[∑
i∈J

(
|Qi|

1
α
− 1

q ‖fχQi
‖q
)p

− tp

]
1

m
if p < ∞,

sup
i∈J

|Qi|
1
α
− 1

q ‖fχQi
‖q − t if p = ∞ .

Since (fn)n≥1 ↑ f , by the monotone convergence theorem,(
|Qi|

1
α
− 1

q ‖fnχQi
‖q
)
↑
(
|Qi|

1
α
− 1

q ‖fχQi
‖q
)
, i ∈ J,

and so there exists a positive integer na such that for any integer n ≥ na,
(
|Qi|

1
α
− 1

q ‖fnχQi
‖q
)p

>
(
|Qi|

1
α
− 1

q ‖fχQi
‖q
)p

− a if p < ∞,

|Qi|
1
α
− 1

q ‖fnχQi
‖q > |Qi|

1
α
− 1

q ‖fχQi
‖q − a if p = ∞,

i ∈ J.

Therefore, for any integer n ≥ na,
∑
i∈J

(
|Qi|

1
α
− 1

q ‖fnχQi
‖q
)p

>
∑
i∈J

(
|Qi|

1
α
− 1

q ‖fχQi
‖q
)p

−ma = tp if p < ∞,

sup
i∈J

|Qi|
1
α
− 1

q ‖fnχQi
‖q > sup

i∈J
|Qi|

1
α
− 1

q ‖fχQi
‖q − a = t if p = ∞.

Thus
‖fn‖(P,q,p,α) > t, n ≥ na.
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This shows that
‖fn‖X = sup

P∈S
‖fn‖(P,q,p,α) > t, n ≥ na.

Therefore
lim
n→∞

‖fn‖X = sup
n≥1

‖fn‖X > t.

Since this is true for all 0 ≤ t < ‖f‖X , we get
lim
n→∞

‖fn‖X ≥ ‖f‖X . (3.4)

From (3.3) and (3.4) we deduce that lim
n→∞

‖fn‖X = ‖f‖X . □

Remark 3.13. From (2.3), Propositions 3.4, 3.5, and 3.12, Remark 3.7, we can
easily deduce the following properties:

(1) X is a Banach lattice of functions on Rd.
(2) Xa and Ẍ are closed order ideals in X and therefore Banach lattices of

functions on Rd.
(3) Xa is included in Ẍ.
(4) if 1 ≤ α < ∞ , then Xa is equal to the closure in X of Lα, and therefore

Xa = X̊.

As announced in Section 1, we shall now show that the spaces X̊ , Ẍ, and X
are different when X = (Lq, lp)α. In order to do this, we need the following result.

Proposition 3.14. (Lq, l∞)αa is included in (Lq, c0).

Proof. Let f be an element of (Lq, l∞)αa , and set for any positive integer n, En =
Rd\Q(0, 2n). It is clear that (En)n≥1 ↓ ∅. Hence lim

n→∞
‖fχEn‖q,∞,α = 0; that is,

for any positive real number ϵ, there is an integer mϵ ≥ 1 such that
‖fχEn‖q,∞,α < ϵ, n ≥ mϵ.

We also have
‖fχI1k

‖q = ‖fχEnχI1k
‖q ≤ ‖fχEn‖q,∞,α , k ∈ Zd with I1k ⊂ En.

Therefore, for any positive real number ϵ,
‖fχI1k

‖q < ϵ, k ∈ Zd with I1k ⊂ Emϵ .

Thus f belongs to (Lq, c0). This ends the proof. □
Proposition 3.15. Let us assume that d = 1 , 1 ≤ q < α < p ≤ ∞ and
X = (Lq, lp)α. Then

(1) Ẍ is strictly included in X when p < ∞,
(2) X̊ is strictly included in Ẍ when p = ∞.

Proof. (1) Suppose that p < ∞, and set f(x) = x− 1
αχ(0,1)(x).

(a) It is clear that 0 ≤ f ≤ e, where e(x) = x− 1
αχR∗

+
(x). We proved in [4]

that e belongs to X = (Lq, lp)α. Therefore, since X is a normed Köthe space (see
Proposition 3.12), we can deduce that f belongs to X.
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(b) We set, for any integer n ≥ 2,
fn = fχR\{ 1

n
<|f |<n}.

We have
1

n
< |f(x)| < n ⇐⇒

[
1

n
< x− 1

α < n and 0 < x < 1

]
⇐⇒ n−α < x < 1,

and so fn = fχEn with En = (0 , n−α].
Let us consider an element r of En and denote by kn,r the unique positive

integer satisfying
kn,r ≤

1

rnα
< kn,r + 1.

We have

r‖fn‖q,p =

∑
k∈Z

(∫
En∩Irk

x− q
αdx

) p
q

 1
p

=

kn,r−1∑
k=0

(∫ (k+1)r

kr

x− q
αdx

) p
q

+

(∫ 1
nα

kn,rr

x− q
αdx

) p
q

 1
p

=

(
α

α− q
r

α−q
α

) 1
q

×

kn,r−1∑
k=0

(
(k + 1)

α−q
α − k

α−q
α

) p
q
+

((
1

rnα

)α−q
α

− k
α−q
α

n,r

) p
q


1
p

.

Therefore

r
1
α
− 1

q
r‖fn‖q,p >

(
α

α− q

) 1
q

.

Thus

‖fn‖q,p,α >

(
α

α− q

) 1
q

.

This shows that f is not in Ẍ = ¨(Lq, lp)α.

(2) Suppose p = ∞, and set E =
⋃
m≥1

Em with

Em =
(
m− 1 +m

α
α−q ,m+m

α
α−q

)
, m ≥ 1.

It has been stated (without detailed proof) in [13] that χE belongs to X =

(Lq, l∞)α but does not belong to X̊. We shall prove that actually it is in Ẍ\X̊.
(a) Let J = (a, a+ r) be an interval of length r. Then; First case: r > 2

α
α−q .

Since the distance dm = (m + 1)
α

α−q −m
α

α−q between Em and Em+1 increases
with m, we have

|E ∩ J | ≤ |E ∩ (1, 1 + r)| ≤ mr,
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where mr stands for the greatest integer satisfying mr − 1 +m
α

α−q
r < r + 1.

Since mr − 1 ≥ 1, we have m
α

α−q
r < r and so, mr <

α−q
α

ln(r). Therefore

r
1
α
− 1

q ‖χEχJ‖q ≤ r
1
α
− 1

q

[
α− q

α
ln(r)

] 1
q

=

(
α− q

α

) 1
q [

r
q
α
−1ln(r)

] 1
q ≤ e−

1
q .

Second case: r ≤ 2
α

α−q .
It is easy to see that

r
1
α
− 1

q ‖χEχJ‖q ≤ r
1
α ≤ 2

1
α−q .

From what proceeds we deduce that χE is in X, and therefore by point 3) of
Proposition 3.4, it belongs to Ẍ.
(b) We have for any positive integer k, ‖χEχEk

‖q = 1, and so χE does not belong
to (Lq, c0). Therefore, since Xa = (Lq, l∞)αa is included in (Lq, c0) (see Proposition
3.14), χE is not in Xa, which is equal to X̊ (see Remark 3.13). This ends the
proof. □

Remark 3.16. Let us assume that 1 ≤ qj ≤ αj ≤ pj ≤ ∞ for j ∈ {0, 1},
θ ∈ (0, 1) and that (X0, X1) is equal to either

(Lq0 , lp0)α0 , (Lq1 , lp1)α1

 orF (q0, p0, α0), F (q1, p1, α1)
.

(1) Remark 3.13 asserts that for j ∈ {0, 1}, the spaces Xj and (Xj)a are
Banach lattices of functions on Rd. Moreover, the spaces (Xj)a (j = 0, 1)
have an absolutely continuous norm. Consequently, from Remark 3.9, we
deduce what follows:

[(X0)a , (X1)a]θ = (X0)
1−θ
a (X1)

θ
a,

[(X0)a , X1]θ = (X0)
1−θ
a (X1)

θ,

[X0 , (X1)a]θ = X1−θ
0 (X1)

θ
a.

(2) Proposition 3.12 asserts that the spaces Xj (j = 0, 1) are Banach function
spaces on Rd satisfying the Fatou property. Therefore, by Proposition 3.10
we have (

X1−θ
0 Xθ

1

)′
= (X ′

0)
1−θ(X ′

1)
θ . (3.5)

We recall below some basic properties of H(q′, p′, α′).

Proposition 3.17 ([4]). (1) H(q′, p′, α′), equipped with ‖ · ‖H(q′,p′,α′), is a Ba-
nach function space on Rd in which (Lq′ , lp

′
) (and also C∞

c if 1 < q) is
dense.

(2) If 1 < q, then H(q′, p′, α′) has an absolutely continuous norm and

[H(q′, p′, α′)]
∗
= [H(q′, p′, α′)]

′
= (Lq, lp)α. (3.6)
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(3) If 1 < q ≤ α < p ≤ ∞, then H(q′, p′, α′) satisfies the Fatou property,

[(Lq, lp)α]′ = H(q′, p′, α′), (3.7)

and

[(Lq, lp)αa ]
∗ = H(q′, p′, α′). (3.8)

Remark 3.18. Let us assume that 1 < qj ≤ αj ≤ pj ≤ ∞ for j in {0, 1} and that
θ ∈ (0, 1). It follows from Point 2 of Proposition 3.17 and Remark 3.9 that

[H(q′0, p
′
0, α

′
0),H(q′1, p

′
1, α

′
1)]θ = H(q′0, p

′
0, α

′
0)

1−θH(q′1, p
′
1, α

′
1)

θ.

4. Proofs of main results

Throughout this section, we assume, unless otherwise specified, that
• 1 ≤ qj ≤ αj ≤ pj ≤ ∞ with αj < ∞ for j in {0, 1},
• 0 < θ < 1 , 1

q
= 1−θ

q0
+ θ

q1
, 1

α
= 1−θ

α0
+ θ

α1
, and 1

p
= 1−θ

p0
+ θ

p1
,

•
X0, X1, X

 is equal to
(Lq0 , lp0)α0 , (Lq1 , lp1)α1 , (Lq, lp)α

 orF (q0, p0, α0), F (q1, p1, α1), F (q, p, α)
,

•
|| · ||X0 , || · ||X1 , || · ||X

 is equal to
|| · ||q0,p0,α0 , || · ||q1,p1,α1 , || · ||q,p,α

 or|| · ||F (q0,p0,α0), || · ||F (q1,p1,α1), || · ||F (q,p,α)

,

• S = Pu if
X0, X1, X

 is equal to
(Lq0 , lp0)α0 , (Lq1 , lp1)α1 , (Lq, lp)α

,

• S = P if
X0, X1, X

 is equal to
F (q0, p0, α0), F (q1, p1, α1), F (q, p, α)

.

We need the following two lemmas for our proofs.

Lemma 4.1. For any elements f, f0 and f1 of L0 satisfying |f | ≤ |f0|1−θ|f1|θ, it
holds

‖f‖X ≤ ‖f0‖1−θ
X0

‖f1‖θX1
.

Therefore

X1−θ
0 Xθ

1 ⊂ X.

Proof. For any element P = {Qi : i ∈ I} of S, we have

|Qi|
1
α
− 1

q ‖fχQi
‖q ≤

(
|Qi|

1
α
− 1

q ‖f0χQi
‖q0
)1−θ (

|Qi|
1
α
− 1

q ‖f1χQi
‖q1
)θ

, i ∈ I.

Therefore

‖f‖(P,q,p,α) =
∥∥∥{|Qi|

1
α
− 1

q ‖fχQi
‖q
}

i∈I

∥∥∥
lp

≤
∥∥∥∥{(|Qi|

1
α
− 1

q ‖f0χQi
‖q0
)1−θ (

|Qi|
1
α
− 1

q ‖f1χQi
‖q1
)θ}

i∈I

∥∥∥∥
lp

.
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By Hölder’s inequality, we get

‖f‖(P,q,p,α) ≤
∥∥∥{|Qi|

1
α
− 1

q ‖f0χQi
‖q0
}

i∈I

∥∥∥1−θ

lp0

∥∥∥{|Qi|
1
α
− 1

q ‖f1χQi
‖q1
}

i∈I

∥∥∥θ
lp1

≤ ‖f0‖1−θ
(P,q0,p0,α0)

‖f1‖θ(P,q1,p1,α1)
.

This implies that

sup
P∈S

‖f‖(P,q,p,α) ≤ sup
P∈S

‖f0‖1−θ
(P,q0,p0,α0)

sup
P∈S

‖f1‖θ(P,q1,p1,α1)
,

and so

‖f‖X ≤ ‖f0‖1−θ
X0

‖f1‖θX1
.

Thus
X1−θ

0 Xθ
1 ⊂ X.

□

Lemma 4.2. Let us assume that α0

α1
= q0

q1
≤ p0

p1
for j ∈ {0, 1}. Then

(1) for f in L0 and j in {0, 1}∥∥∥ |f | q
qj

∥∥∥
Xj

≤ ‖f‖
q
qj

X

and ∥∥∥ |f | q
qj

∥∥∥
Xj

= ‖f‖
q
qj

X if α0

α1

=
q0
q1

=
p0
p1
,

(2)
X1−θ

0 Xθ
1 = X.

Proof. (1) Let j be in {0, 1} and let f belong to L0. For any P = {Qi : i ∈ I} in
S, we have

|Qi|
1
αj

− 1
qj

∥∥∥|f | q
qj χQi

∥∥∥
qj
=
(
|Qi|

1
α
− 1

q ‖fχQi
‖q
) q

qj , i ∈ I.

Therefore∥∥∥∥{|Qi|
1
αj

− 1
qj

∥∥∥|f | q
qj χQi

∥∥∥
qj

}
i∈I

∥∥∥∥
lpj

=

∥∥∥∥{(|Qi|
1
α
− 1

q ‖fχQi
‖q
) q

qj

}
i∈I

∥∥∥∥
lpj

.

Note that 
α0

α1
= q0

q1
≤ p0

p1
=⇒

[
αj

α
=

qj
q
≤ pj

p
, j ∈ {0, 1}

]
,

α0

α1
= q0

q1
= p0

p1
=⇒

[
αj

α
=

qj
q
=

pj
p
, j ∈ {0, 1}

]
.
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Thus we get

∥∥∥∥{|Qi|
1
αj

− 1
qj

∥∥∥|f | q
qj χQi

∥∥∥
qj

}
i∈I

∥∥∥∥
lpj

≤
∥∥∥{|Qi|

1
α
− 1

q ‖fχQi
‖q
}

i∈I

∥∥∥ q
qj

lp
,

and if α0

α1
= q0

q1
= p0

p1
,∥∥∥∥{|Qi|

1
αj

− 1
qj

∥∥∥|f | q
qj χQi

∥∥∥
qj

}
i∈I

∥∥∥∥
lpj

=
∥∥∥{|Qi|

1
α
− 1

q ‖fχQi
‖q
}

i∈I

∥∥∥ q
qj

lp
.

This shows that
sup
P∈S

∥∥∥|f | q
qj

∥∥∥
(P,qj ,pj ,αj)

≤ sup
P∈S

‖f‖
q
qj

(P,q,p,α) ,

sup
P∈S

∥∥∥|f | q
qj

∥∥∥
(P,qj ,pj ,αj)

= sup
P∈S

‖f‖
q
qj

(P,q,p,α) if α0

α1
= q0

q1
= p0

p1
.

and so 
∥∥∥ |f | q

qj

∥∥∥
Xj

≤ ‖f‖
q
qj

X ,∥∥∥ |f | q
qj

∥∥∥
Xj

= ‖f‖
q
qj

X if α0

α1
= q0

q1
= p0

p1
.

(2) Let f be in X. By the result obtained in point (1), for j in {0, 1}, fj = |f |
q
qj

belongs to Xj. Furthermore, |f0|1−θ|f1|θ = |f |. Consequently, f is in X1−θ
0 Xθ

1 .
This shows that

X ⊂ X1−θ
0 Xθ

1 .

From this inclusion and Lemma 4.1, we deduce the claim. □

Following essentially the argumentation used by Hakim [9] and using the above
results, we can give the proof of our first main result.

Proof of Theorem 1.1. Point (1) of Remark 3.13 asserts that the spaces Xj(j =
0, 1) are Banach lattices of functions on Rd. Consequently, by (3.1) and Lemma
4.2, we have

[X0, X1]θ = X0 ∩X1
X
. (4.1)

(a) Without loss of generality, we assume that q0 < q1.
Let f ∈ X0 ∩X1, P = {Qi : i ∈ I} ∈ S and let n be a positive integer. We have
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for any i ∈ I,∥∥∥|Qi|
1
α
− 1

q

(
fχRd\{ 1

n
<|f |<n}

)
χQi

∥∥∥
q

≤
∥∥∥|Qi|

1
α
− 1

q |f |1−
q0
q |f |

q0
q χ{|f |≤ 1

n}∩Qi

∥∥∥
q
+
∥∥∥|Qi|

1
α
− 1

q |f |1−
q1
q |f |

q1
q χ{|f |≥n}∩Qi

∥∥∥
q

≤ n
q0−q

q |Qi|
1
α
− 1

q

∥∥∥|f | q0q χQi

∥∥∥
q
+ n

q−q1
q |Qi|

1
α
− 1

q

∥∥∥|f | q1q χQi

∥∥∥
q

= n
q0−q

q |Qi|
1
α
− 1

q ‖fχQi
‖

q0
q
q0

+ n
q−q1

q |Qi|
1
α
− 1

q ‖fχQi
‖

q1
q
q1

= n
q0−q

q

(
|Qi|

1
α0

− 1
q0 ‖fχQi

‖q0
) q0

q
+ n

q−q1
q

(
|Qi|

1
α1

− 1
q1 ‖fχQi

‖q1
) q1

q
.

Therefore,∥∥∥∥{∥∥∥|Qi|
1
α
− 1

q

(
fχRd\{ 1

n
<|f |<n}

)
χQi

∥∥∥
q

}
i∈I

∥∥∥∥
lp

≤ n
q0−q

q

∥∥∥∥{(|Qi|
1
α0

− 1
q0 ‖fχQi

‖q0
) q0

q

}
i∈I

∥∥∥∥
lp

+ n
q−q1

q

∥∥∥∥{(|Qi|
1
α1

− 1
q1 ‖fχQi

‖q1
) q1

q

}
i∈I

∥∥∥∥
lp

= n
q0−q

q

∥∥∥{|Qi|
1
α0

− 1
q0 ‖fχQi

‖q0
}

i∈I

∥∥∥ q0
q

lp0
+ n

q−q1
q

∥∥∥{|Qi|
1
α1

− 1
q1 ‖fχQi

‖q1
}

i∈I

∥∥∥ q1
q

lp1
.

(because of pqj
q

= pj)

This shows that

sup
P∈S

∥∥∥fχRd\{ 1
n
<|f |<n}

∥∥∥
(P,q,p,α)

≤n
q0−q

q sup
P∈S

‖f‖
q0
q

(P,q0,p0,α0)
+ n

q−q1
q sup

P∈S
‖f‖

q1
q

(P,q1,p1,α1)
,

and so ∥∥∥fχRd\{ 1
n
<|f |<n}

∥∥∥
X
≤ n

q0−q
q ‖f‖

q0
q

X0
+ n

q−q1
q ‖f‖

q1
q

X1
.

Since q0 < q1, we have q0 < q < q1. Therefore

lim
n→∞

∥∥∥fχRd\{ 1
n
<|f |<n}

∥∥∥
X
= 0 .

Thus f belongs to Ẍ. Hence we obtain X0 ∩X1 ⊂ Ẍ and since Ẍ is closed in X,
we get

X0 ∩X1
X ⊂ Ẍ. (4.2)

(b) Let f be an element of Ẍ and let n be a positive integer. We have, by Lemma
4.2, ∥∥∥fχ{ 1

n
<|f |<n}

∥∥∥
X0

≤
∥∥∥ |f |1−

q
q0 |f |

q
q0χ{ 1

n
<|f |}

∥∥∥
X0

≤ n
q−q0

q

∥∥∥ |f |
q
q0

∥∥∥
X0

≤ n
q−q0

q ‖f‖
q
q0
X < ∞
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and ∥∥∥fχ{ 1
n
<|f |<n}

∥∥∥
X1

≤
∥∥∥ |f |1−

q
q1 |f |

q
q1χ{|f |<n}

∥∥∥
X1

≤ n
q1−q

q

∥∥∥ |f |
q
q1

∥∥∥
X1

≤ n
q1−q

q ‖f‖
q
q1
X < ∞.

Therefore, fχ{ 1
n
<|f |<n} belongs to X0 ∩X1.

Since f belongs to Ẍ,
{
fχ{ 1

n
<|f |<n}

}
n≥1

converges to f in X and so f belongs

to X0 ∩X1
X . Thus

Ẍ ⊂ X0 ∩X1
X
. (4.3)

The conjunction of (4.1), (4.2), and (4.3) shows that [X0, X1]θ = Ẍ. □

Proof of Theorem 1.2. (1) By Lemma 4.1, (X0)
1−θ
a (X1)

θ
a , (X0)

1−θ
a Xθ

1 and
X1−θ

0 (X1)
θ
a are continuously embedded in X. Furthermore, from Remark 3.9,

the spaces (X0)
1−θ
a (X1)

θ
a , (X0)

1−θ
a Xθ

1 and X1−θ
0 (X1)

θ
a are of absolutely continu-

ous norm. Consequently, each of the three spaces (X0)
1−θ
a (X1)

θ
a , (X0)

1−θ
a Xθ

1 and
X1−θ

0 (X1)
θ
a is embedded in Xa.

(2) Let f be an element of Xa. We set fj = |f |
q
qj for j ∈ {0, 1}.

Let {En}n≥1 be a nonincreasing sequence of measurable subsets of Rd such that∣∣∣∣∣⋂
n≥1

En

∣∣∣∣∣ = 0. By Lemma 4.2 we have for any j in {0, 1},

‖fjχEn‖Xj
≤ ‖fχEn‖

q
qj

X , n ≥ 1.

Therefore, since f is of absolutely continuous norm, we get

lim
n→∞

‖fjχEn‖Xj
= 0, j ∈ {0, 1}.

Hence for j in {0, 1}, fj belongs to (Xj)a, and so |f | = |f0|1−θ|f1|θ is in all the
three spaces (X0)

1−θ
a (X1)

θ
a , (X0)

1−θ
a Xθ

1 and X1−θ
0 (X1)

θ
a. Consequently, f belongs

to (X0)
1−θ
a (X1)

θ
a , (X0)

1−θ
a Xθ

1 and X1−θ
0 (X1)

θ
a. Thus Xa is embedded in each of

the spaces (X0)
1−θ
a (X1)

θ
a , (X0)

1−θ
a Xθ

1 and X1−θ
0 (X1)

θ
a.

(3) From the results obtained in point 1) and point 2) we have

(X0)
1−θ
a (X1)

θ
a = (X0)

1−θ
a Xθ

1 = X1−θ
0 (X1)

θ
a = Xa .

The above equalities and Remark 3.16 imply that

[(X0)a , (X1)a]θ = [(X0)a , X1]θ = [X0 , (X1)a]θ = Xa.

Furthermore, Xa = X̊ and (Xj)a = X̊j for j in {0, 1} (see point 4) of Remark
3.13). Thus we obtain[

X̊0 , X̊1

]
θ
=
[
X̊0 , X1

]
θ
=
[
X0 , X̊1

]
θ
= X̊.

□
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Proof of Theorem 1.3. (1) We have
[H(q′0, p

′
0, α

′
0),H(q′1, p

′
1, α

′
1)]θ = H(q′0, p

′
0, α

′
0)

1−θH(q′1, p
′
1, α

′
1)

θ (by Remark 3.18)

=
(
[(Lq0 , lp0)α0 ]′

)1−θ (
[(Lq1 , lp1)α1 ]′

)θ (by (3.7))

=
(
[(Lq0 , lp0)α0 ]1−θ [(Lq1 , lp1)α1 ]θ

)′
(by (3.5))

= ((Lq, lp)α)
′ (by Lemma 4.2)

= H(q′, p′, α′.) (by (3.7))

(2) Since, for j in {0, 1}, ˚(Lqj , lpj)αj is the closure in (Lqj , lpj)αj of C∞
c , it is easy

to see that ˚(Lq0 , lp0)α0 ∩ ˚(Lq1 , lp1)α1 is dense in both ˚(Lq0 , lp0)α0 and ˚(Lq1 , lp1)α1 .
Therefore

[H(q′0, p
′
0, α

′
0),H(q′1, p

′
1, α

′
1)]

θ
= [((Lq0 , lp0)α0

a )∗ , ((Lq1 , lp1)α1
a )∗]

θ (by (3.8))

=
[(

˚(Lq0 , lp0)α0

)∗
,
(

˚(Lq1 , lp1)α1

)∗]θ
(by Remark 3.13)

=
([

˚(Lq0 , lp0)α0 , ˚(Lq1 , lp1)α1

]
θ

)∗
(by Proposition 3.11)

=
(

˚(Lq, lp)α
)∗

(by Theorem 1.2)

= ( (Lq, lp)αa )∗ (by Remark 3.13)
= H(q′, p′, α′) . (by (3.8))

□
Proof of Theorem 1.4. Since C∞

c is dense in H(q′j, p
′
j, α

′
j) for j in {0, 1}, it is easy to

see that H(q′0, p
′
0, α

′
0)∩H(q′1, p

′
1, α

′
1) is dense in both H(q′0, p

′
0, α

′
0) and H(q′1, p

′
1, α

′
1).

Therefore
[(Lq0 , lp0)α0 , (Lq1 , lp1)α1 ]θ = [H(q′0, p

′
0, α

′
0)

∗,H(q′1, p
′
1, α

′
1)

∗]
θ (by (3.6))

= ([H(q′0, p
′
0, α

′
0),H(q′1, p

′
1, α

′
1)]θ)

∗

(by Proposition 3.11)
= H(q′, p′, α′)∗ (by Theorem 1.3)
= (Lq, lp)α. (by (3.6))

□
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