Khayyam J. Math. 10 (2024), no. 1, 1-9 DOI: 10.22034/KJM.2023.385509.2768

CHARACTERIZATION OF JORDAN HOMOMORPHISMS AND JORDAN DERIVATIONS

ABBAS ZIVARI-KAZEMPOUR

Communicated by H.R. Ebrahimi Vishki

ABSTRACT. We show that if $f: A \longrightarrow B$ is a continuous linear map between Banach algebras satisfying $f(a \circ b) = f(a) \circ f(b)$ for all $a, b \in A$ with $a \circ b = e_A$ or $ab = ba = e_A$, then f is a Jordan homomorphism. It is also proved that if $\delta: A \longrightarrow X$ is a continuous linear map satisfying $\delta(a \circ b) = \delta(a)b + a\delta(b)$ for all $a, b \in A$ with $a \circ b = w$, where $w \in Z(A)$ is a right (or left) separating point of Banach A-bimodule X, then δ is a generalized Jordan derivation.

1. INTRODUCTION AND PRELIMINARIES

Let A be a unital Banach algebra with unit e_A and let X be a unital Banach A-bimodule. A linear map $\delta : A \longrightarrow X$ is called a *derivation* [respectively, *generalized derivation*] if for all $a, b \in A$,

$$\delta(ab) = \delta(a)b + a\delta(b), \qquad [\delta(ab) = \delta(a)b + a\delta(b) - a\delta(e_A)b],$$

and it is called a *Jordan derivation* [respectively, *generalized Jordan derivation*] if

$$\delta(a^2) = \delta(a) \bullet a, \quad [\delta(a^2) = \delta(a) \bullet a - a\delta(e_A)a], \quad a \in A,$$

where " \bullet " denotes the Jordan product on X:

$$a \bullet x = x \bullet a = ax + xa, \quad a \in A, \ x \in X.$$

Obviously, δ is a Jordan derivation [generalized Jordan derivation] if and only if $\delta(a \circ b) = \delta(a) \bullet b + a \bullet \delta(b)$, $[\delta(a \circ b) = \delta(a) \bullet b + a \bullet \delta(b) - a\delta(e_A)b - b\delta(e_A)a]$, for all $a, b \in A$. Here " \circ " denotes the Jordan product $a \circ b = ab + ba$ on A.

Date: Received: 13 February 2023; Revised: 3 November 2023; Accepted: 8 January 2024. 2020 Mathematics Subject Classification. Primary 47B47; Secondary 47B48.

Key words and phrases. Jordan homomorphism, (generalized) Jordan derivation, separating point.

A. ZIVARI-KAZEMPOUR

It is clear that each derivation (respectively, generalized derivation) is a Jordan derivation (respectively, generalized Jordan derivation), but the converse is failed in general [5].

It is proved by Johnson [5, Theorem 6.3] that every continuous Jordan derivation from C^* -algebra A into any Banach A-bimodule X is a derivation.

Recently, several authors have studied the linear maps that satisfy the derivation equation whether ab = 0, or ab is a non-trivial idempotent. We refer the reader to [1, 2, 4, 6] for a full account of the topic and a list of references.

We say that $w \in A$ is a left (right) separating point of A-bimodule X if the condition wx = 0 [xw = 0] for $x \in X$ implies that x = 0.

A linear map $f : A \longrightarrow B$ between two Banach algebras A and B is called Jordan homomorphism if $f(a \circ b) = f(a) \circ f(b)$ for all $a, b \in A$, which is equivalent to assuming that $f(a^2) = f(a)^2$ for all $a \in A$.

Some characterizations of Jordan homomorphisms on Banach algebras were obtained by the author in [8-10].

In this paper, we show that f is a Jordan homomorphism whenever

$$f(a \circ b) = f(a) \circ f(b),$$

for all $a, b \in A$ with $a \circ b = e_A$. Moreover, under special hypotheses, it is proved that f is a Jordan homomorphism if and only if

$$a, b \in A, ab = ba = e_A \implies f(a \circ b) = f(a) \circ f(b).$$

As a consequence we characterize [generalized] Jordan derivations on Banach algebras. We also investigate the continuous linear maps from a Banach algebra A into a Banach A-bimodule X satisfying

$$a, b \in A, a \circ b = w \implies \delta(a \circ b) = \delta(a)b + a\delta(b),$$

where $w \in Z(A)$ is a right or left separating point of X and Z(A) is the center of A.

Lemma 1.1 ([7, Lemma 6.3.2]). Let $f : A \longrightarrow B$ be a Jordan homomorphism. Then

$$f(aba) = f(a)f(b)f(a), \quad a, b \in A.$$

Through this paper, A and B are two Banach algebras, where A is unital and X is a unital Banach A-bimodule, unless indicated otherwise.

2. Characterization of Jordan homomorphisms

We commence with the following result, which is our first main theorem.

Theorem 2.1. Let $f : A \longrightarrow B$ be a continuous linear map such that

$$f(a \circ b) = f(a) \circ f(b),$$

for all $a, b \in A$ with $a \circ b = e_A$. Then

$$f(e_A)f(a^2) + f(a^2)f(e_A) = 2f(a)^2, \quad a \in A.$$

Moreover, if for all $a \in A$,

$$f(a) = f(a)f(e_A) = f(e_A)f(a),$$

then f is a Jordan homomorphism.

Proof. Since $\frac{1}{2}(e_A \circ e_A) = e_A$, we get $f(e_A) = f(e_A)^2$. Let $a \in A$ be arbitrary. For $\lambda \in \mathbb{C}$ with $|\lambda| < 1/||a||$, $e_A - \lambda a$ is invertible and $(e_A - \lambda a)^{-1} = \sum_{n=0}^{\infty} \lambda^n a^n$. It is obvious that

$$\frac{1}{2}(e_A - \lambda a) \circ (e_A - \lambda a)^{-1} = e_A;$$

thus it follows from the continuity of f that

$$2f(e_A) = f(e_A - \lambda a)f\left(\sum_{n=0}^{\infty} \lambda^n a^n\right) + f\left(\sum_{n=0}^{\infty} \lambda^n a^n\right)f(e_A - \lambda a)$$

$$= \left(f(e_A) - \lambda f(a)\right)\sum_{n=0}^{\infty} \lambda^n f(a^n) + \sum_{n=0}^{\infty} \lambda^n f(a^n)\left(f(e_A) - \lambda f(a)\right)$$

$$= f(e_A)f(e_A) + f(e_A)\sum_{n=1}^{\infty} \lambda^n f(a^n) - \lambda f(a)\sum_{n=0}^{\infty} \lambda^n f(a^n)$$

$$+ f(e_A)f(e_A) + \sum_{n=1}^{\infty} \lambda^n f(a^n)f(e_A) - \lambda \sum_{n=0}^{\infty} \lambda^n f(a^n)f(a)$$

$$= f(e_A)\sum_{n=0}^{\infty} \lambda^{n+1}f(a^{n+1}) - \lambda f(a)\sum_{n=0}^{\infty} \lambda^n f(a^n)$$

$$+ \sum_{n=0}^{\infty} \lambda^{n+1}f(a^{n+1})f(e_A) - \lambda \sum_{n=0}^{\infty} \lambda^n f(a^n)f(a).$$

Therefore

$$\sum_{n=0}^{\infty} \lambda^{n+1} [f(e_A)f(a^{n+1}) - f(a)f(a^n) + f(a^{n+1})f(e_A) - f(a^n)f(a)] = 0,$$

for all $\lambda \in \mathbb{C}$, with $|\lambda| < 1/||a||$. Hence

$$f(e_A)f(a^{n+1}) + f(a^{n+1})f(e_A) = f(a)f(a^n) + f(a^n)f(a),$$

for $n = 0, 1, 2, \ldots$ Taking n = 1, we obtain

$$f(e_A)f(a^2) + f(a^2)f(e_A) = 2f(a)^2, \quad a \in A.$$

If $f(a) = f(a)f(e_A) = f(e_A)f(a)$ for all $a \in A$, then it follows that $f(a^2) = f(a)^2$, and hence f is a Jordan homomorphism.

Proposition 2.2. Let A and B be two unital Banach algebras and let $f : A \longrightarrow B$ be a unital continuous linear map such that f(ab) = f(a)f(b) for all $a, b \in A$ with $ab = e_A$. Then f is a Jordan homomorphism.

Proof. Since $e_A e_A = e_A$, we get $f(e_A)^2 = f(e_A)$. Let $a \in A$. For $\lambda \in \mathbb{C}$, with $|\lambda| < 1/||a||, e_A - \lambda a$ is invertible and $(e_A - \lambda a)^{-1} = \sum_{n=0}^{\infty} \lambda^n a^n$. Noting that

$$(e_A - \lambda a)(e_A - \lambda a)^{-1} = e_A,$$

thus by our assumption and a similar argument of Theorem 2.1, we obtain

$$f(e_A)f(a^{n+1}) = f(a)f(a^n),$$

for n = 0, 1, 2, ... and for every $a \in A$. Taking n = 1 and using the fact that $f(e_A) = e_B$, we conclude that $f(a^2) = f(a)^2$ for all $a \in A$.

The set of all invertible elements of A is denoted by Inv(A).

Corollary 2.3. Let A and B be two unital Banach algebras and let $f : A \longrightarrow B$ be a unital continuous linear map such that $f(aa^{-1}) = f(a)f(a^{-1})$ for all $a \in Inv(A)$. Then f is a Jordan homomorphism.

Similar to the proof of Theorem 2.1, we can obtain the following result.

Theorem 2.4. Let $f : A \longrightarrow B$ be a continuous linear map such that

$$a, b \in A, \quad ab = ba = e_A \implies f(a \circ b) = f(a) \circ f(b).$$

If $f(a) = f(a)f(e_A) = f(e_A)f(a)$ for every $a \in A$, then f is a Jordan homomorphism.

Next, we show that the converse of Theorem 2.4 is also true with additional hypothesis.

Theorem 2.5. Suppose that $f : A \longrightarrow B$ is a Jordan homomorphism. Then (f(ab) - f(a)f(b))f(a) = 0,

for all $a, b \in A$ with $ab = e_A$.

Proof. Since f is a Jordan homomorphism, we have

$$f(x)f(e_A) = f(e_A)f(x),$$

for all $x \in A$, and hence

$$f(x) = f(x)f(e_A) = f(e_A)f(x), \quad x \in A.$$
 (2.1)

Now, let $a, b \in A$ with $ab = e_A$. Then a = aba, and by Lemma 1.1, we have

$$f(a) = f(aba) = f(a)f(b)f(a).$$
 (2.2)

It follows from (2.1) and (2.2) that

$$\left(f(e_A) - f(a)f(b)\right)f(a) = 0,$$

for every $a, b \in A$ with $ab = e_A$.

The next result is a consequence of Theorem 2.5.

Corollary 2.6. Let A and B be two unital Banach algebras and let $f : A \longrightarrow B$ be a Jordan homomorphism. If $f(a) \in Inv(B)$ for all $a \in A$, then f(ab) = f(a)f(b)for all $a, b \in A$ with $ab = e_A$.

It should be pointed out that by the hypotheses of the corollary above, we get $f(a \circ b) = f(a) \circ f(b)$ for all $a, b \in A$ with $ab = ba = e_A$.

Let us mention an example of a Jordan homomorphism $f : A \longrightarrow B$, where the identity $f(a \circ b) = f(a) \circ f(b)$ for all $a, b \in A$ with $a \circ b = e_A$ does not imply that f is a homomorphism.

Example 2.7. Let

$$A = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} : \quad a_{11}, a_{12}, a_{22} \in \mathbb{C} \right\}.$$

We make $X = \mathbb{C}$ an A-bimodule by defining

$$a\lambda = a_{22}\lambda, \quad \lambda a = \lambda a_{11}, \quad \lambda \in \mathbb{C}, \ a \in A.$$

Consider the linear map $\delta : A \longrightarrow X$ defined by $\delta(a) = a_{12}$. Note that $\delta(e_A) = 0$. Then $\delta(ab) = \delta(b)a + b\delta(a)$ for all $a, b \in A$ and hence δ is a Jordan derivation. However, δ is not a derivation. Take

$$B = \left\{ \begin{bmatrix} a & x \\ 0 & a \end{bmatrix} : \quad a \in A, \ x \in X \right\}.$$

Then B becomes a unital Banach algebra under the usual matrix operations. Define a linear map $f: A \longrightarrow B$ by

$$f(a) = \begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix}, \quad a \in A$$

Then for all $a, b \in A$ with $a \circ b = e_A$, we have

$$f(a) \circ f(b) = \begin{bmatrix} a \circ b & \delta(a \circ b) \\ 0 & a \circ b \end{bmatrix} = \begin{bmatrix} e_A & 0 \\ 0 & e_A \end{bmatrix} = f(a \circ b).$$

Therefore f is a Jordan homomorphism by Theorem 2.1, but it is not a homomorphism.

3. CHARACTERIZATION OF JORDAN DERIVATIONS

In this section, we characterize continuous linear maps on Banach algebras, which are necessarily [generalized] Jordan derivations.

Theorem 3.1. Let $\delta : A \longrightarrow X$ be a continuous linear map.

- (1) δ is a Jordan derivation if and only if $\delta(a \circ b) = \delta(a) \bullet b + a \bullet \delta(b)$ for all $a, b \in A$ with $a \circ b = e_A$.
- (2) δ is a generalized Jordan derivation if and only if for every $a, b \in A$ with $a \circ b = e_A$,

$$\delta(a \circ b) = \delta(a) \bullet b + a \bullet \delta(b) - a\delta(e_A)b - b\delta(e_A)a.$$
(3.1)

Proof. (1) Let $\delta(a \circ b) = \delta(a) \bullet b + a \bullet \delta(b)$ for all $a, b \in A$ with $a \circ b = e_A$. Let f and B be as in Example 2.7. Then $f(a \circ b) = f(a) \circ f(b)$ for all $a, b \in A$ with $a \circ b = e_A$. So f is a Jordan homomorphism by Theorem 2.1 and hence δ is a Jordan derivation. The converse is clear.

(2) Suppose that equality (3.1) holds for all $a, b \in A$ with $a \circ b = e_A$. Define a linear map $D : A \longrightarrow X$ by $D(a) = \delta(a) - a\delta(e_A)$. Then $D(a \circ b) = D(a) \bullet b + a \bullet D(b)$ for all $a, b \in A$ with $a \circ b = e_A$, and hence (1) implies that D is a Jordan derivation. This means that δ is a generalized Jordan derivation.

Theorem 3.2. Let $\delta : A \longrightarrow X$ be a continuous linear map.

(1) δ is a Jordan derivation if and only if

$$a, b \in A, \quad ab = ba = e_A \implies \delta(a \circ b) = \delta(a) \bullet b + a \bullet \delta(b).$$
 (3.2)

A. ZIVARI-KAZEMPOUR

(2) δ is a generalized Jordan derivation if and only if for all $a, b \in A$ with $ab = ba = e_A$,

$$\delta(a \circ b) = \delta(a) \bullet b + a \bullet \delta(b) - a\delta(e_A)b - b\delta(e_A)a.$$

Proof. (1) If δ is a Jordan derivation, then (3.2) holds. For the converse, let f and B be as in Example 2.7. Then $f(a \circ b) = f(a) \circ f(b)$ for all $a, b \in A$ with $ab = ba = e_A$. Consequently, f is a Jordan homomorphism by Theorem 2.4, and hence δ is a Jordan derivation.

Part (2) can be proved by similar argument as in the part (2) of Theorem 3.1.

An immediate but noteworthy result to Theorem 3.2 is the following result.

Corollary 3.3. Let $\delta : A \longrightarrow X$ be a continuous linear map.

- (1) [6, Corollary 2.3] δ is a Jordan derivation if and only if for all $a, b \in A$ with $ab = e_A$, $\delta(ab) = \delta(a)b + a\delta(b)$.
- (2) δ is a generalized Jordan derivation if and only if for every $a, b \in A$ with $ab = e_A, \ \delta(ab) = \delta(a)b + a\delta(b) a\delta(e_A)b.$

Proof. Let for all $a, b \in A$ with $ab = e_A$,

$$\delta(ab) = \delta(a)b + a\delta(b). \tag{3.3}$$

Then

$$a, b \in A, \quad ba = e_A \implies \delta(ba) = \delta(b)a + b\delta(a).$$
 (3.4)

By (3.3) and (3.4), $\delta(a \circ b) = \delta(a) \bullet b + a \bullet \delta(b)$ for all $a, b \in A$ with $ab = ba = e_A$. Thus, δ is a Jordan derivation by Theorem 3.2.

Conversely, suppose that δ is a Jordan derivation. Let f and B be as in Example 2.7. Since $\delta(e_A) = 0$, it follows that

$$f(a) = f(a)f(e_A) = f(e_A)f(a), \quad a \in A.$$
 (3.5)

Now, let $a, b \in A$ with $ab = e_A$. As δ is a Jordan derivation, f is a Jordan homomorphism, and thus by Lemma 1.1, we have

$$f(a) = f(aba) = f(a)f(b)f(a),$$
 (3.6)

for all $a, b \in A$ with $ab = e_A$. It follows from (3.5) and (3.6) that

$$f(e_A)f(a) = f(a)f(b)f(a)$$

which yields that $(\delta(a)b + a\delta(b))a = 0$ for all $a, b \in A$ with $ab = e_A$. Multiplying this equality from the right by b, we reach the desired result.

(2) follows from (1).

4. Generalized Jordan Derivations

By Theorem 3.1, $\delta : A \longrightarrow X$ is a generalized Jordan derivation if and only if equality (3.1) holds for all $a, b \in A$ with $a \circ b = e_A$. However, the following result is another tool for characterizing generalized Jordan derivations.

Theorem 4.1. Let $w \in Z(A)$ be a right or left separating point of X and let $\delta: A \longrightarrow X$ be a continuous linear map satisfying

$$a, b \in A, a \circ b = w \implies \delta(a \circ b) = \delta(a)b + a\delta(b).$$

Then δ is a generalized Jordan derivation and

$$\delta(aw) = \delta(a)w + a\delta(w) - \delta(e_A)aw, \quad \delta(wa) = \delta(w)a + w\delta(a) - wa\delta(e_A).$$

Proof. Since $\frac{1}{2}(e_A \circ w) = w$, it follows that $\delta(w) = \delta(e_A)w = w\delta(e_A)$. Let $a \in A$ be arbitrary. For $\lambda \in \mathbb{C}$, with $|\lambda| < 1/||a||$, $e_A - \lambda a$ is invertible and $(e_A - \lambda a)^{-1} = \sum_{n=0}^{\infty} \lambda^n a^n$. As

$$\frac{1}{2}(e_A - \lambda a) \circ (e_A - \lambda a)^{-1} w = w,$$

so from the continuity of δ , we have

$$2\delta(w) = \delta(e_A - \lambda a)(e_A - \lambda a)^{-1}w + (e_A - \lambda a)\delta((e_A - \lambda a)^{-1}w)$$

$$= \delta(e_A - \lambda a)\sum_{n=0}^{\infty} \lambda^n a^n w + (e_A - \lambda a)\delta\left(\sum_{n=0}^{\infty} \lambda^n a^n w\right)$$

$$= \delta(e_A - \lambda a)w + \delta(e_A - \lambda a)\sum_{n=1}^{\infty} \lambda^n a^n w$$

$$+ (e_A - \lambda a)\delta(w) + (e_A - \lambda a)\sum_{n=0}^{\infty} \lambda^n \delta(a^n w)$$

$$= 2\delta(w) - \lambda\delta(a)w - \lambda a\delta(w)$$

$$+ \delta(e_A - \lambda a)\sum_{n=1}^{\infty} \lambda^n a^n w + (e_A - \lambda a)\sum_{n=1}^{\infty} \lambda^n \delta(a^n w)$$

$$= 2\delta(w) + \delta(e_A)\sum_{n=1}^{\infty} \lambda^n a^n w - \lambda\delta(a)\sum_{n=0}^{\infty} \lambda^n a^n w$$

$$+ \sum_{n=1}^{\infty} \lambda^n \delta(a^n w) - \lambda a\sum_{n=0}^{\infty} \lambda^n \delta(a^n w).$$

Therefore

$$\sum_{n=0}^{\infty} \lambda^{n+1} [\delta(e_A) a^{n+1} w - \delta(a) a^n w + \delta(a^{n+1} w) - a \delta(a^n w)] = 0,$$

for all $\lambda \in \mathbb{C}$, with $|\lambda| < 1/||a||$. Hence

$$\delta(a^{n+1}w) = \delta(a)a^n w + a\delta(a^n w) - \delta(e_A)a^{n+1}w,$$

for $n = 0, 1, 2, \dots$ In particular, we have

$$\delta(aw) = \delta(a)w + a\delta(w) - \delta(e_A)aw$$
(4.1)

and

$$\delta(a^2w) = \delta(a)aw + a\delta(aw) - \delta(e_A)a^2w, \qquad (4.2)$$

for all $a \in A$. It follows from (4.1) and (4.2) that

$$\delta(a^2w) = \delta(a)aw + a[\delta(a)w + a\delta(w) - \delta(e_A)aw] - \delta(e_A)a^2w.$$
(4.3)

Interchanging a by a^2 in (4.1), we get

$$\delta(a^2w) = \delta(a^2)w + a^2\delta(w) - \delta(e_A)a^2w.$$
(4.4)

Comparing (4.3) and (4.4), we arrive at

$$\delta(a^2)w = \delta(a)aw + a\delta(a)w - a\delta(e_A)aw.$$

If w is a right separating point of X, then $\delta(a^2) = \delta(a)a + a\delta(a) - a\delta(e_A)a$ for all $a \in A$. Consequently, δ is a generalized Jordan derivation. Similarly, by using the equality

$$w(e_A - \lambda a)^{-1} \circ \frac{1}{2}(e_A - \lambda a) = w,$$

we get

$$\delta(wa) = \delta(w)a + w\delta(a) - wa\delta(e_A)$$

and

$$\delta(wa^2) = \delta(wa)a + wa\delta(a) - wa^2\delta(e_A),$$

for all $a \in A$. Thus,

$$w\delta(a^2) = wa\delta(a) + w\delta(a)a - wa\delta(e_A)a.$$

If w is a left separating point of X, then $\delta(a^2) = a\delta(a) + \delta(a)a - a\delta(e_A)a$, and hence δ is a generalized Jordan derivation.

Similar to the proof of Theorem 4.1, we can obtain the following result.

Proposition 4.2. Let $w \in Z(A)$ be a right or left separating point of X and let $\delta : A \longrightarrow X$ be a continuous linear map satisfying

 $a, b \in A, ab = ba = w \implies \delta(a \circ b) = \delta(a)b + a\delta(b).$

Then δ is a generalized Jordan derivation.

In particular, if $w = e_A$, then $a\delta(e_A) = \delta(e_A)a$ for all $a \in A$

From Proposition 4.2, we have the following result.

Corollary 4.3. Let $\delta : A \longrightarrow X$ be a continuous linear map such that for all $a \in Inv(A)$, $\delta(a \circ a^{-1}) = \delta(a)a^{-1} + a\delta(a^{-1})$. Then δ is a generalized Jordan derivation.

The converse of Theorem 4.1 is not true in general. The following example illustrates this fact.

Example 4.4. Let

$$A = \left\{ \begin{bmatrix} s & t \\ 0 & r \end{bmatrix} : \quad s, t, r \in \mathbb{R} \right\}.$$

Define a linear map $\delta : A \longrightarrow A$ by

$$\delta(\begin{bmatrix} s & t \\ 0 & r \end{bmatrix}) = \begin{bmatrix} s & 0 \\ 0 & r \end{bmatrix}.$$

Then $\delta(ab) = \delta(a)b + a\delta(b) - a\delta(e_A)b$ for all $a, b \in A$. Certainly, δ is a generalized Jordan derivation, but the equality $\delta(a \circ b) = \delta(a)b + a\delta(b)$ is failed, in general, even for $a \circ b = e_A$. For example, take

$$a = \begin{bmatrix} \frac{-1}{2} & 1\\ 0 & \frac{1}{2} \end{bmatrix}, \qquad b = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}.$$

If $\delta(a) = a\delta(e_A)$ for all $a \in A$, then δ is a generalized Jordan derivation, but Example 4.4 shows that the converse is not true, in general. However, for commutative C^* -algebra it is holds according the next result.

Corollary 4.5. Let A be a commutative C^* -algebra and let $\delta : A \longrightarrow X$ be a continuous linear map such that $\delta(a \circ a^{-1}) = \delta(a)a^{-1} + a\delta(a^{-1})$ for all $a \in Inv(A)$. Then $\delta(a) = a\delta(e_A)$ for all $a \in A$. In particular, δ is a generalized derivation.

Proof. By Corollary 4.3, δ is a generalized Jordan derivation. Define a linear mapping $D: A \longrightarrow X$ by $D(a) = \delta(a) - a\delta(e_A)$ for all $a \in A$. Clearly, D is a Jordan derivation, and hence it is a derivation by Johnson's result. On account of [3, Theorem 2.8.63], D is identically zero. Consequently, $\delta(a) = a\delta(e_A)$ for all $a \in A$.

Acknowledgement. The author gratefully acknowledges the helpful comments of the anonymous referees.

References

- J. Alaminos, M. Bresar, J. Extremera and A.R. Villena, *Maps preserving zero products*, Studia Math. **193** (2009) 131–159.
- G. An and J. Li, Characterization of linear mappings through zero products or zero Jordan products Electron. J. Linear Algebra 31 (2016) 408–424.
- H.G. Dales, Banach algebras and automatic continuity, The Clarendon Press, Oxford University Press, New York, 2000.
- H. Ghahramani, On derivations and Jordan derivations through zero products, Oper. Matrices, 8 (2014) 759–771.
- B.E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120 (1996) 455–473.
- F. Lu, Characterization of derivations and Jordan derivations on Banach algebras, Linear Algebra Appl. 430 (2009) 2233–2239.
- T. Palmer, Banach algebras and the general theory of *-algebras, Vol I. Cambridge University Press, Cambridge, 1994.
- A. Zivari-Kazempour, A characterization of 3-Jordan homomorphisms on Banach algebras, Bull. Aust. Math. Soc. 93 (2016), no. 2, 301–306.
- A. Zivari-Kazempour, Automatic continuity of n-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc. 33(1) (2018) 165–170.
- A. Zivari-Kazempour, Characterization of Pseudo n-Jordan homomorphisms, Kyungpook Math. J. 61 (2021) 734–744.

DEPARTMENT OF MATHEMATICS, AYATOLLAH BORUJERDI UNIVERSITY, BORUJERD, IRAN. *Email address*: zivari@abru.ac.ir; zivari6526@gmail.com