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ABSTRACT. We show that if f: A — B is a continuous linear map between
Banach algebras satisfying f(aob) = f(a)o f(b) for all a,b € A with aob=e4
or ab = ba = e4, then f is a Jordan homomorphism. It is also proved that if
0: A — X is a continuous linear map satisfying d(a o b) = §(a)b + ad(b) for
all a,b € A with aob = w, where w € Z(A) is a right (or left) separating point
of Banach A-bimodule X, then ¢ is a generalized Jordan derivation.

1. INTRODUCTION AND PRELIMINARIES

Let A be a unital Banach algebra with unit e4 and let X be a unital Banach
A-bimodule. A linear map 0 : A — X is called a derivation [respectively,
generalized derivation)] if for all a,b € A,

d(ab) = d(a)b+ ad(b), [0(ab) = d(a)b+ ad(b) — ad(ea)b],
and it is called a Jordan derivation [respectively, generalized Jordan derivation)
if

§(a*) =6(a)ea, [0(a*) =d(a)ea—adles)al, ac A,

“ o7 denotes the Jordan product on X:

where
aer=rcrea=ar+xa, a€A x€elX.

Obviously, 0 is a Jordan derivation [generalized Jordan derivation] if and only if

d(aob)=0(a)eb+aed(b), [6(acb)=0(a)eb+ aed(b) —ad(es)b— bi(ea)al,

for all a,b € A. Here “o” denotes the Jordan product a o b = ab+ ba on A.
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2 A. ZIVARI-KAZEMPOUR

It is clear that each derivation (respectively, generalized derivation) is a Jordan
derivation (respectively, generalized Jordan derivation), but the converse is failed
in general [5].

It is proved by Johnson [5, Theorem 6.3] that every continuous Jordan deriva-
tion from C*-algebra A into any Banach A-bimodule X is a derivation.

Recently, several authors have studied the linear maps that satisfy the deriva-
tion equation whether ab = 0, or ab is a non-trivial idempotent. We refer the
reader to [1,2,4,6] for a full account of the topic and a list of references.

We say that w € A is a left (right) separating point of A-bimodule X if the
condition wz = 0 [zw = 0] for x € X implies that = = 0.

A linear map f : A — B between two Banach algebras A and B is called
Jordan homomorphism if f(aob) = f(a)o f(b) for all a,b € A, which is equivalent
to assuming that f(a?) = f(a)? for all a € A.

Some characterizations of Jordan homomorphisms on Banach algebras were
obtained by the author in [8-10].

In this paper, we show that f is a Jordan homomorphism whenever

flaob)=f(a)o f(b),
for all a,b € A with a ob = e4. Moreover, under special hypotheses, it is proved
that f is a Jordan homomorphism if and only if

a,be A, ab=ba=ey = f(aob)= f(a)o f(b).

As a consequence we characterize [generalized| Jordan derivations on Banach
algebras. We also investigate the continuous linear maps from a Banach algebra
A into a Banach A-bimodule X satisfying

a,be A, aocb=w = d(aob)=0d(a)b+ ad(b),

where w € Z(A) is a right or left separating point of X and Z(A) is the center
of A.

Lemma 1.1 ([7, Lemma 6.3.2]). Let f : A — B be a Jordan homomorphism.
Then

f(aba) = f(a)f(b)f(a), a,be€ A

Through this paper, A and B are two Banach algebras, where A is unital and
X is a unital Banach A-bimodule, unless indicated otherwise.

2. CHARACTERIZATION OF JORDAN HOMOMORPHISMS
We commence with the following result, which is our first main theorem.
Theorem 2.1. Let f: A — B be a continuous linear map such that
flaob) = f(a)o f(b),
for all a,b € A with aob=ey. Then
flea)f(a®) + f(a®) f(ea) = 2f(a)?, a€ A

Moreover, if for all a € A,
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then f is a Jordan homomorphism.

Proof. Since 3(ea0eq) = ea, we get fea) = flea)?.
Let a € A be arbitrary. For A € C with |A| < 1/||a||, ea — Aa is invertible and
(ea—Aa)™t =307 A"a". It is obvious that

1
5(6,4 —Xa)o(eq —Aa)! =ey;

thus it follows from the continuity of f that

2f(ea) = fea — Na)f (Z A”a”) +f (Z A”a”) flea — Aa)

— (f(en) ~ M(@) f; V) + fj V(@) (Fer) — Af(@)
= eaFen) + e fj V(@) A0 fj V" f(a)

+ flea)flen) + fj V(@) f(ea) ~ fj N F(a) (@)
~ fea) fj AL @) — A () i zf(a)

+ YN (@) fea) = A A f(a”) f(a).
n=0 n=0
Therefore

S XN f(ea) f(a") = fla)f(a") + f(a™) f(ea) — f(a") f(a)] =0,

for all A € C, with |\| < 1/||a||. Hence
flea)f(@™™) + f(a™ ) flea) = f(a)f(a™) + f(a™) f(a),
forn=0,1,2,.... Taking n = 1, we obtain
flea)f(a®) + f(a®) f(ea) = 2f(a)?, a€ A

If f(a) = f(a)f(ea) = f(ea)f(a) for all a € A, then it follows that f(a?) = f(a)?,
and hence f is a Jordan homomorphism. O

Proposition 2.2. Let A and B be two unital Banach algebras and let f : A — B
be a unital continuous linear map such that f(ab) = f(a)f(b) for all a,b € A with
ab=ey. Then f is a Jordan homomorphism.

Proof. Since eqeq = ey, we get f(ea)? = f(ea). Let a € A. For X € C, with
Al < 1/]la||, ea — Aa is invertible and (eq4 — Aa)™! = >"°° A\"a™. Noting that

(ea — Aa)(ea — Aa) ™t = ey,
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thus by our assumption and a similar argument of Theorem 2.1, we obtain

flea)f(a"™) = f(a)f(a™),
for n = 0,1,2,... and for every a € A. Taking n = 1 and using the fact that
f(ea) = ep, we conclude that f(a?) = f(a)? for all a € A. O

The set of all invertible elements of A is denoted by Inv(A).

Corollary 2.3. Let A and B be two unital Banach algebras and let f : A — B be
a unital continuous linear map such that f(aa™") = f(a)f(a™") for alla € Inv(A).
Then f is a Jordan homomorphism.

Similar to the proof of Theorem 2.1, we can obtain the following result.
Theorem 2.4. Let f: A — B be a continuous linear map such that
a,be A, ab=ba=ey = f(aob)= f(a)o f(b).

If f(a) = f(a)f(ea) = f(ea)f(a) for every a € A, then f is a Jordan homomor-
phism.

Next, we show that the converse of Theorem 2.4 is also true with additional
hypothesis.

Theorem 2.5. Suppose that f : A — B is a Jordan homomorphism. Then
(f(ab) — f(a)f (b)) f(a) =0,

for all a,b € A with ab=e4.

Proof. Since f is a Jordan homomorphism, we have

f(x)flea) = flea) f(z),

for all x € A, and hence

f(z) = f(x)f(ea) = flea)f(z), =€ A (2.1)
Now, let a,b € A with ab = e4. Then a = aba, and by Lemma 1.1, we have
fla) = f(aba) = f(a)f(b)f(a). (22)

It follows from (2.1) and (2.2) that
(f(ea) = f(a)f (b)) f(a) =0,

for every a,b € A with ab = ey4. O
The next result is a consequence of Theorem 2.5.

Corollary 2.6. Let A and B be two unital Banach algebras and let f : A — B be
a Jordan homomorphism. If f(a) € Inv(B) for all a € A, then f(ab) = f(a)f(b)
for all a,b € A with ab = e4.

It should be pointed out that by the hypotheses of the corollary above, we get
flaob) = f(a)o f(b) for all a,b € A with ab = ba = e4.

Let us mention an example of a Jordan homomorphism f : A — B, where
the identity f(aob) = f(a)o f(b) for all a,b € A with a ob = e, does not imply
that f is a homomorphism.
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Example 2.7. Let

@11 a2
A= : .
{ [ 0 (122} a1, @12, 022 € (C}

We make X = C an A-bimodule by defining
aX = ap\, Ia=Aa, NEC, a€eA.

Consider the linear map 6 : A — X defined by d(a) = a12. Note that d(es) = 0.
Then §(ab) = 6(b)a + bd(a) for all a,b € A and hence § is a Jordan derivation.
However, ¢ is not a derivation. Take

B:{B 2]: CLGA,J;EX}.

Then B becomes a unital Banach algebra under the usual matrix operations.
Define a linear map f: A — B by

f(a) = [g 5%‘)] L acA

Then for all a,b € A with a ob = e4, we have
_laob d(acb)| lea O]
sworm=["o" el <[ O = e
Therefore f is a Jordan homomorphism by Theorem 2.1, but it is not a homo-
morphism.

3. CHARACTERIZATION OF JORDAN DERIVATIONS

In this section, we characterize continuous linear maps on Banach algebras,
which are necessarily [generalized] Jordan derivations.

Theorem 3.1. Let  : A — X be a continuous linear map.
(1) 0 is a Jordan derivation if and only if 6(aob) = d(a) eb+ a e d(b) for all
a,b € A withaob=ey.
(2) 9 is a generalized Jordan derivation if and only if for every a,b € A with
aob=ey,

d(aob)=0(a)eb+aed(b)—ad(ea)b—bi(es)a. (3.1)

Proof. (1) Let 6(aob) = d(a) @b+ aed(b) for all a,b € A with aob =ey. Let
f and B be as in Example 2.7. Then f(aob) = f(a) o f(b) for all a,b € A with
aob=-ey. So f is a Jordan homomorphism by Theorem 2.1 and hence ¢ is a
Jordan derivation. The converse is clear.

(2) Suppose that equality (3.1) holds for all a,b € A with a 0 b = e,4. Define a
linear map D : A — X by D(a) = d(a) — ad(es). Then D(aob) = D(a) e b+
ae D(b) for all a,b € A with aob = ey, and hence (1) implies that D is a Jordan
derivation. This means that ¢ is a generalized Jordan derivation. O

Theorem 3.2. Let § : A — X be a continuous linear map.
(1) 6 is a Jordan derivation if and only if

a,be A, ab=ba=eys = d(aob)=05(a)eb+aed(b). (3.2)
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(2) 9 is a generalized Jordan derivation if and only if for all a,b € A with
ab=ba = ey,

d(aob)=0(a)eb+aed(b) —ad(ea)b—bd(ea)a.

Proof. (1) If  is a Jordan derivation, then (3.2) holds. For the converse, let f
and B be as in Example 2.7. Then f(aob) = f(a) o f(b) for all a,b € A with
ab = ba = e4. Consequently, f is a Jordan homomorphism by Theorem 2.4, and
hence 0 is a Jordan derivation.

Part (2) can be proved by similar argument as in the part (2) of Theorem
3.1. O]

An immediate but noteworthy result to Theorem 3.2 is the following result.

Corollary 3.3. Let § : A — X be a continuous linear map.

(1) [6, Corollary 2.5] § is a Jordan derivation if and only if for all a,b € A
with ab = ey4, §(ab) = 6(a)b + ad(b).

(2) ¢ is a generalized Jordan derivation if and only if for every a,b € A with
ab = ey4, d(ab) = d(a)b + ad(b) — ad(e)d.

Proof. Let for all a,b € A with ab = e,
d(ab) = d(a)b+ ad(b). (3.3)
Then
a,be A, ba=ey = d(ba) =0d(b)a+ bd(a). (3.4)

By (3.3) and (3.4), d(aob) = d(a)eb+aei(b) for all a,b € A with ab = ba = e4.
Thus, ¢ is a Jordan derivation by Theorem 3.2.

Conversely, suppose that ¢ is a Jordan derivation. Let f and B be as in
Example 2.7. Since d(es) = 0, it follows that

fla) = f(a)f(ea) = f(ea)f(a), a€ A (3.5)

Now, let a,b € A with ab = e4. As ¢ is a Jordan derivation, f is a Jordan
homomorphism, and thus by Lemma 1.1, we have

fla) = f(aba) = f(a)f(b)f(a), (3.6)
for all a,b € A with ab = e4. It follows from (3.5) and (3.6) that
f(ea)fla) = f(a)f(b) f(a),

which yields that (6(a)b+ ad(b))a =0 for all a,b € A with ab = e4. Multiplying
this equality from the right by b, we reach the desired result.
(2) follows from (1). O

4. GENERALIZED JORDAN DERIVATIONS

By Theorem 3.1, § : A — X is a generalized Jordan derivation if and only if
equality (3.1) holds for all a,b € A with aob = e4. However, the following result
is another tool for characterizing generalized Jordan derivations.
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Theorem 4.1. Let w € Z(A) be a right or left separating point of X and let
0: A— X be a continuous linear map satisfying

a,be A, aob=w = J(aob)=4d(a)b+ ad(b).
Then ¢ is a generalized Jordan derivation and
d(aw) = 0(a)w + ad(w) — d(ea)aw, J(wa) = d(w)a + wd(a) —wad(ea).

Proof. Since (e 0 w) = w, it follows that §(w) = d(es)w = wd(ea).
Letac A be arbitrary. For A € C, with |A| < 1/||al|, ea — Aa is invertible and
(ea—Aa)t =307 A"a™. As
1
5(6‘4 —Xa)o(eq —Aa)tw =w,

so from the continuity of d, we have

26(w) = 6(ea — Aa)(ea — Aa)"'w + (ea — Aa)d((ea — Aa)~'w)

d(eq — Aa) Z)\”a w+ (eq4 — Aa)d (Z)\"a”w)
n=0

=0(ea — Aa)w + (e — Aa) i A'a"w

+(ea — Aa)s(w) + (ea — Aa) Y N'6(a"w)
_ 95(w) — M(a)w — Aad(w)

+d(ea — Aa) Z A"a"w + (ea — Aa) Z A" (a"w)
= 25(w) + d(ea Z)\"anw Ao (a Z/\" "w

n=1

+ f: A"6(a"w) — Aa i A" (a"w).
n=1 n=0

Therefore
Z N5 (eq)a" M w — d(a)a"w + §(a" M w) — ad(a"w)] = 0,

for all A € C, with |A] < 1/[|a||. Hence
§(a"w) = §(a)a"w + ad(a"w) — d(ea)a" M w,
forn =0,1,2,.... In particular, we have
d(aw) = d(a)w + ad(w) — d(ea)aw (4.1)
and

§(a*w) = 6(a)aw + ad(aw) — 6(e)a’w, (4.2)
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for all @ € A. It follows from (4.1) and (4.2) that

§(a*w) = §(a)aw + ald(a)w + ad(w) — d(es)aw] — §(eq)aw. (4.3)
Interchanging a by a? in (4.1), we get
§(a*w) = §(a®)w + a®6(w) — d(eq)a’w. (4.4)

Comparing (4.3) and (4.4), we arrive at
§(a®)w = §(a)aw + ad(a)w — ad(ea)aw.

If w is a right separating point of X, then 6(a®) = §(a)a + ad(a) — ad(es)a for
all a € A. Consequently, d is a generalized Jordan derivation. Similarly, by using
the equality

w(es — Aa) " to %(eA —Aa) = w,
we get
d(wa) = d(w)a + wd(a) —wad(e)
and
§(wa?) = §(wa)a + wad(a) — wa*d(ea),
for all a € A. Thus,
wd(a®) = wad(a) +wd(a)a — wad(eq)a.

If w is a left separating point of X, then §(a?) = ad(a) + d(a)a — ad(ea)a, and
hence 0 is a generalized Jordan derivation. 0

Similar to the proof of Theorem 4.1, we can obtain the following result.

Proposition 4.2. Let w € Z(A) be a right or left separating point of X and let
0: A— X be a continuous linear map satisfying

a,be A, ab=ba=w = d(aob)=3d(a)b+ ad(b).

Then ¢ is a generalized Jordan derivation.
In particular, if w = e, then ad(eq) = d(ea)a for all a € A

From Proposition 4.2, we have the following result.

Corollary 4.3. Let 0 : A — X be a continuous linear map such that for all
a € Inv(A), d(aoa™) = d(a)a™t + ad(a™). Then § is a generalized Jordan
derivation.

The converse of Theorem 4.1 is not true in general. The following example
illustrates this fact.

Example 4.4. Let

A:{S i : s,t,rE]R}.

Define a linear map 0 : A — A by

-]
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Then 6(ab) = 6(a)b+ad(b) —ad(ea)b for all a,b € A. Certainly, 0 is a generalized
Jordan derivation, but the equality d(a o b) = d(a)b + ad(b) is failed, in general,
even for a o b = e4. For example, take

=11 -1 0
_ 2 —
=[5 4 =[]

If 6(a) = ad(eq) for all a € A, then § is a generalized Jordan derivation,
but Example 4.4 shows that the converse is not true, in general. However, for
commutative C*-algebra it is holds according the next result.

Corollary 4.5. Let A be a commutative C*-algebra and let 6 : A — X be a
continuous linear map such that 6(aca™') = §(a)a ' +ad(a™?t) for alla € Inv(A).
Then §(a) = ad(eq) for all a € A. In particular, 6 is a generalized derivation.

Proof. By Corollary 4.3, 0 is a generalized Jordan derivation. Define a linear
mapping D : A — X by D(a) = §(a) — ad(ea) for all a € A. Clearly, D is a
Jordan derivation, and hence it is a derivation by Johnson’s result. On account
of [3, Theorem 2.8.63], D is identically zero. Consequently, d(a) = ad(e4) for all
a € A. O
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