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VISCOSITY LIKE IMPLICIT METHODS FOR ZEROS OF
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Abstract. We present some implicit methods to approximate the zeros of
monotone operators in the setting of Banach spaces. The methods considered
herein converge strongly to the desired solutions under certain assumptions.
As applications, we employ our methods to obtain solutions of convex min-
imization problems and Fredholm integral equations. Finally, we show the
effectiveness and efficiency of the algorithm considered herein.

1. Introduction

Throughout this paper, M is a real Banach space having dual M∗. Let J be
a normalized duality mapping from M into 2M

∗ as follows:

J(u) := {λ∗ ∈ M∗ : ⟨u, λ∗⟩ = ∥u∥∥λ∗∥, ∥u∥ = ∥λ∗∥}

where ⟨·, ·⟩ is used as a generalized duality pairing between M and M∗. For more
properties of normalized duality mapping, see [8]. A mapping G ⊂ M×M∗ with
domain D(G) = {u ∈ M : G(u) ̸= 0} and range R(G) = ∪{G(u) ∈ M : u ∈
D(G)} is said to be monotone if

⟨u− v, u∗ − v∗⟩ ≥ 0

for all (u, u∗), (v, v∗) ∈ G. To ensure the solution of nonlinear evolution equation,
Browder [6] and Kato [11] introduced new operators, namely accretive operator,
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independently. A mapping G : D(G) ⊂ M → R(G) ⊂ M is said to be accretive
if for every u, v ∈ D(G), there exists j(u− v) ∈ J(u− v) such that

⟨G(u)−G(v), j(u− v)⟩ ≥ 0.

For more details on accretive operators, see [11]. If a Banach space M is reduced
to a Hilbert space, then an accretive operator is equivalent to a monotone operator
in terms of Browder [6] and Minty [13].

It is widely known fact that a number of important problems arising in various
fields can be modeled in the form of initial value problem of the form

du

dt
+G(u) = 0, u(0) = u0, (1.1)

where G is an accretive operator on the underline Banach space. The models
of heat, wave, and Schrödinger equations are some examples of such evolution
equations (see [7]). Browder [6] proved that (1.1) is solvable if G is an accretive
operator and locally Lipschitzian on the underline Banach space. Numerous
mathematicians obtained the solution of (1.1) under different assumptions on the
operator G (see [12]).

It easily implies that if u is independent of t in evolution equation (1.1), then
du
dt

= 0 and (1.1) becomes G(u) = 0. Thus the equilibrium points of the system de-
scribed by (1.1) are corresponding to approximating zeros of accretive operators;
see [6,8] and references therein. Furthermore, the problem of approximating zero
of monotone operator is related with the convex minimization problem; see [23]
for more details. Therefore, approximating a zero of monotone (or accretive) op-
erator is a paramount problem in the field of nonlinear analysis and optimization.

To obtain a zero of an accretive operator in the setting of Hilbert space X ,
Browder [6] considered an operator S : X → X by S = I − G, where G is an
accretive operator and I is the identity operator on a Hilbert space X . The above
defined operator S is known as pseudo-contractive, and the zero of G (if it exists)
is equivalent to the fixed point of S. Thus, obtaining the solution of 0 ∈ G(u)
is reduced to approximating the fixed points of pseudo-contractive mappings.
Therefore, in the last 30 years or so, a number of papers have been appeared in
literature dealing with some new iterative techniques for obtaining fixed points
of pseudo-contractive mappings (or, equivalently, zeros of accretive mappings);
see [8] and reference therein.

However, it can be easily seen that the methods of converting the inclusion
problem 0 ∈ G(u) into a fixed point problem for (I − G) : M → M is not
relevant in the setting of Banach spaces, since, when G is monotone, the identity
mapping and a mapping from M into M∗ does not make sense (see [12, 21] and
others). Considering this fact, many authors studied algorithms to approximate
solutions of equations 0 ∈ G(u) when G : M → M∗ is of monotone type in
Banach spaces and this field is flourishing in the nonlinear analysis; see [9,10,23].

On the other hand, Moudafi [14] considered the following iterative algorithm:
Let X be a Hilbert space and let Y be a closed convex subset of X . Let ψ : Y → Y
be a contraction and let S : Y → Y be a nonexpansive mapping. For all n ∈ N,
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βn ∈ (0, 1), u1 ∈ Y , and the sequence {un} is defined by
un+1 = βnψ(un) + (1− βn)S(un). (1.2)

The sequence (1.2) under certain assumptions converges strongly to a fixed point
of S, which is also a solution of the following the variational inequality:

⟨(I − ψ)ū, ū− u⟩ ≤ 0 for all u ∈ F (S),

where F (S) is the set of fixed points of S. The algorithm (1.2) considered by
Moudafi is known as viscosity approximation. These methods have been enor-
mously studied in the literature in order to guarantee strong convergence of the
sequence (see [15, 17, 20, 22] and references therein).

The implicit midpoint rule (IMR) is one of the powerful methods for solving
ordinary differential equations; see [3, 18] and the references therein. Consider-
ing this fact, Xu, Alghamdi, and Shahzad [22] obtained the following implicit
midpoint viscosity approximation method.
Theorem 1.1. Let X be a Hilbert space and let Y be a closed convex subset of
X . Let S : Y → Y be a nonexpansive mapping with F (S) ̸= ∅. Let ψ : Y → Y be
a contraction with coefficient ρ ∈ [0, 1). For given u1 ∈ Y, the sequence {un} is
defined by

un+1 = βnψ(un) + (1− βn)S

(
un + un+1

2

)
, n ≥ 1

satisfying the following assumptions:
(C1) limn→∞ βn = 0,
(C2)

∞∑
n=0

βn = ∞,

(C3) either
∞∑
n=0

∣∣∣βn+1 − βn

∣∣∣ <∞ or limn→∞
βn+1

βn
= 1.

Then the sequence {un} converges strongly to a fixed point of S that is also a
solution of the following the variational inequality:

⟨(I − ψ)ū, ū− u⟩ ≤ 0 for all u ∈ F (S).

Recently, motivated by Xu, Alghamdi, and Shahzad [22], Tang and Bao [20]
considered the semi-implicit midpoint rule (SIMR) and obtained the following
result.
Theorem 1.2. Let M be a 2-uniformly smooth and uniformly convex Banach
space with dual M∗. Let G : M∗ → M be an L-Lipschitz continuous monotone
mapping such that G−1(0) ̸= ∅. Let ψ : M → M be a contraction with coefficient
ρ ∈ (0, 1) and let I : M → M be an identity mapping. For given u1 ∈ M, the
sequence is defined by

un+1 = αnψ(un) + βnun + γn(I − ωnGJ)

(
un + un+1

2

)
,

where J is the normalized duality mapping from M → M∗, and the sequences
{αn}, {βn}, {γn}, and {ωn} are in the interval [0, 1] satisfying the following
assumptions:
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(1) αn + βn + γn = 1, lim
n→∞

αn = 0, and
∞∑
n=0

αn = ∞,

(2) lim
n→∞

ωn

αn
= 0 and

∞∑
n=0

ωn <∞.

Assume Kmin ∩ (GJ)−1(0) ̸= ∅. Then the sequence {un} converges strongly to an
element u† ∈ (GJ)−1(0).

Motivated by Xu, Alghamdi, and Shahzad [22], Tang and Bao [20], and others,
we consider an implicit viscosity like an algorithm to approximate the zero of
a monotone operator in the setting of a Banach space. Some new algorithms
are suggested to approximate the solutions of convex minimization problems and
Fredholm integral equations. Finally, we present the effectiveness and efficiency
of the algorithm considered herein over SIMR. This way, results in [9, 20, 23] are
complemented, extended, and generalized.

2. Preliminaries

A Banach space M is said to be uniformly convex if for each ε ∈ (0, 2], there

exists δ > 0 such that
∥∥∥∥u+ v

2

∥∥∥∥ ≤ 1 − δ for all u, v ∈ M with ∥u∥ = ∥v∥ = 1

and ∥u− v∥ > ε. The modulus of smoothness of a Banach space M (denoted by
ρM : [0,∞) → [0,∞)) is defined by

ρM(s) = sup

{
∥u+ sv∥+ ∥u− sv∥

2
− 1 : ∥u∥ = ∥v∥ = 1

}
, s ≥ 0.

A Banach space M is said to be uniformly smooth if lim
s→0

ρM(s)
s

= 0. A Banach
space is said to be q-uniformly smooth if there exists a constant c > 0 such
that ρM(s) ≤ csq for all s > 0, where q > 1 is a fixed real number. It is well
known that every q-uniformly smooth Banach space is uniformly smooth. Every
uniformly smooth Banach space is smooth. If a Banach space M is smooth, then
the duality mapping J : M → 2M

∗ is single-valued. If p ≥ 2, then Lp or Wmp is
2-uniformly smooth.

The norm of M is said to be uniformly Gâteaux differentiable if for each v ∈
SM := {u ∈ M : ∥u∥ = 1}, the limit

lim
s→0

∥u+ sv∥ − ∥u∥
s

exists (uniformly) for u ∈ SM. If a Banach space M has a uniformly Gâteaux
differentiable norm, then the duality mapping is norm to weak∗ uniformly con-
tinuous; that is, if any sequence {un} in M converges strongly to u, then J(un)
converges to J(u) in weak∗ topology. For more details on the geometry of Banach
spaces, one may refer to [1].

Let ℓ∞ be the Banach space of bounded real sequences with the supremum
norm. It is well known that there exists a bounded linear functional µ on ℓ∞

such that the following three conditions hold:
(a) If tn ∈ ℓ∞ and tn ≥ 0 for every n ∈ N, then µ({tn}) ≥ 0;
(b) if tn = 1 for every n ∈ N, then µ({tn}) = 1;
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(c) µ({tn}) = µ({tn + 1}) for all {tn} ∈ ℓ∞.

Such a functional µ is called a Banach limit, and the value of µ at {tn} ∈ ℓ∞ is
denoted by µntn.
Let {un} be a bounded sequence in M. For sufficiently large R > 0, we have
un ∈ K := BR(u∗) for all n ∈ N, where u∗ ∈ M. It is noted that K is a nonempty,
bounded, closed and convex subset of M. Let f be a real valued function on M
defined as follows:

f(u) = µn∥un − u∥2 for all u ∈ M.

Then the function f is a convex and continuous. If M is reflexive, then there
exists v ∈ M such that f(v) = min

u∈K
f(u). Let Kmin be a set defined as follows:

Kmin :=

{
v ∈ K : f(v) = min

u∈K
f(u)

}
.

It is noted that Kmin is a nonempty closed convex bounded subset of M; see [23].
Proposition 2.1 ([16]). Let a be a real number and let (a1, a2, . . . ) ∈ ℓ∞ such
that µn(an) ≤ a for all Banach limits µ and lim sup

n→∞
(an+1 − an) ≤ 0. Then

lim sup
n→∞

an ≤ a.

Lemma 2.2 ([19]). Let {ζn} ⊂ R+ (set of nonnegative real numbers) such that
for all n ≥ 0

ζn+1 = (1− θn)ζn + ηn,

where {θn} and {ηn} are real sequences such that

(i) limn→∞ θn = 0,
∞∑
n=1

θn = ∞,

(ii) limn→∞
ηn
θn

≤ 0,
∞∑
n=1

ηn <∞.

Then the sequence {ζn} converges to 0.

In [2], it was shown that if M is 2-uniformly smooth, then there exists a
constant L1 > 0, such that for all u, v ∈ M,

∥J(u)− J(v)∥ ≤ L1∥u− v∥.

Definition 2.3. A mapping G : D(G) ⊂ M∗ → M is said to be L-Lipschitz
continuous if there exists a number L > 0, such that for all u, v ∈ D(G),

∥G(u)−G(v)∥M ≤ L∥u− v∥M∗ .

We denote the set of zeros of G by G−1(0) := {u ∈ D(G) : 0 ∈ G(u)}.
Definition 2.4. A mapping ψ : M → M is called a contraction with a coefficient
ρ ∈ [0, 1) if, for all u, v ∈ M,

∥ψ(u)− ψ(v)∥ ≤ ρ∥u− v∥.

Definition 2.5. The mapping S : M → M is said to be nonexpansive if, for all
u, v ∈ M,

∥S(u)− S(v)∥ ≤ ∥u− v∥.
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Lemma 2.6 ([21]). Let M be a real Banach space with dual M∗ and let J :
M → 2M

∗ be the generalized duality pairing. Then
∥u+ v∥2 ≤ ∥u∥2 + 2⟨v, j(u+ v)⟩ (2.1)

for all u, v ∈ M and j(u+ v) ∈ J(u+ v).

Definition 2.7 ([4]). Let M be a normed linear space. A functional g : M :→ R
is weakly lower semicontinuous if, for every sequence {un} ⊂ M converging
weakly to u ∈ M, we have

g(u) ≤ lim inf
n→∞

g(un).

3. Main results

Now we present our main theorem.
Theorem 3.1. Let M be a 2-uniformly smooth and uniformly convex Banach
space having dual M∗. Let G : M∗ → M be an L-Lipschitz continuous monotone
mapping such that G−1(0) ̸= 0. Let ψ : M → M be a contraction mapping with
coefficient ρ ∈ (0, 1) and let I : M → M be an identity mapping. Let {sn} be a
sequence in (s, 1] with s ∈ (0, 1). For a given u1 ∈ M, define the sequence {un}
as follows:

un+1 = αnψ(un) + βnun + γn(I − ωnGJ)(snun + (1− sn)un+1), (3.1)
where J is the normalized duality mapping from M into M∗ and the sequences
{αn}, {βn}, {γn}, and {ωn} are in the interval [0, 1] satisfying the following
assumptions:

(H1) αn + βn + γn = 1, lim
n→∞

αn = 0, and
∞∑
n=0

αn = ∞;

(H2) lim
n→∞

ωn

αn
= 0 and

∞∑
n=0

ωn <∞.

Assume that Kmin ∩ (GJ)−1(0) ̸= ∅. Then the sequence {un} strongly converges
to an element u† ∈ (GJ)−1(0).
Proof. First, we show that the sequence {un} is bounded. Let u† ∈ (GJ)−1(0)
or J(u†) ∈ G−1(0). Let a := min{1 − γn + γns} > 0. Since lim

n→∞
αn = 0 and

lim
n→∞

ωn

αn
= 0, there exists N0 ∈ N such that αn ≤ a

4
and ωn

αn
≤ 1

4LL1
for all n ≥ N0.

Let r > 0 be sufficient large such that uN0 ∈ Br(u
†) and f(uN0) ∈ B r

5
(u†). Now,

we show that the sequence {un} ⊆ B = Br(u†) for all integers n ≥ N0. We
show this by induction. We suppose that for any n > N0, un ∈ B and show that
un+1 ∈ B. For this, we assume that ∥un+1 − u†∥ > r. From (3.1), we have
un+1−un = αn(ψ(un)−un)+γn(1−sn)(un+1−un)−γnωnGJ(snun+(1−sn)un+1).

It follows that
(1− γn(1− sn))(un+1 − un) = αn(ψ(un)− un)− γnωnGJ(snun + (1− sn)un+1)

and
un+1 − un =

αn

(1− γn(1− sn))
(ψ(un)− un)
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− γnωn

(1− γn(1− sn))
GJ(snun + (1− sn)un+1). (3.2)

From (3.2) and Lemma 2.6, we get
∥un+1 − u†∥2 = ∥un+1 − un + un − u†∥2

≤ ∥un − u†∥2 + 2⟨un+1 − un, j(un+1 − u†)⟩

= ∥un − u†∥2 + 2

〈
αn

(1− γn(1− sn))
(ψ(un)− un)

− γnωn

(1− γn(1− sn))
GJ(snun + (1− sn)un+1), j(un+1 − u†)

〉
and

∥un+1 − u†∥2 = ∥un − u†∥2 + 2

〈
αn

(1− γn(1− sn))
(ψ(un)− un)

− γnωn

(1− γn(1− sn))
GJ(snun + (1− sn)un+1)

+
αn

(1− γn(1− sn))
(un+1 − u†)

− αn

(1− γn(1− sn))
(un+1 − u†), j(un+1 − u†)

〉
= ∥un − u†∥2 − 2αn

(1− γn(1− sn))
∥un+1 − u†∥2

+2

〈
αn

(1− γn(1− sn))
(ψ(un)− u†)

− γnωn

(1− γn(1− sn))
GJ(snun + (1− sn)un+1)

+
αn

(1− γn(1− sn))
(un+1 − un), j(un+1 − u†)

〉
.

Using (3.2) in the above inequality, we have

∥un+1 − u†∥2 ≤ ∥un − u†∥2 − 2αn

(1− γn(1− sn))
∥un+1 − u†∥2

+2

〈
αn

(1− γn(1− sn))
(ψ(un)− u†)

− γnωn

(1− γn(1− sn))
GJ(snun + (1− sn)un+1)

+
αn

(1− γn(1− sn))

{
αn

(1− γn(1− sn))
(ψ(un)− un)

− γnωn

(1− γn(1− sn))
GJ(snun + (1− sn)un+1)

}
, j(un+1 − u†)

〉
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and

∥un+1 − u†∥2 ≤ ∥un − u†∥2 − 2αn

(1− γn(1− sn))
∥un+1 − u†∥2 +

2

〈
αn

(1− γn(1− sn))
(ψ(un)− u†)

− γnωn

(1− γn(1− sn))
GJ(snun + (1− sn)un+1)

+
αn

(1− γn(1− sn))

{
αn

(1− γn(1− sn))
(ψ(un)− u†)

− αn

(1− γn(1− sn))
(un − u†)

− γnωn

(1− γn(1− sn))
GJ(snun + (1− sn)un+1)

}
, j(un+1 − u†)

〉
.

Thus

∥un+1 − u†∥2

≤ ∥un − u†∥2 − 2αn

(1− γn(1− sn))
∥un+1 − u†∥2 + 2

[(
αn

(1− γn(1− sn))

+
α2
n

(1− γn(1− sn))2

)
∥ψ(un)− u†∥+ α2

n

(1− γn(1− sn))2
∥un − u†∥

+

(
γnωn

(1− γn(1− sn))
+

γnωnαn

(1− γn(1− sn))2

)
∥GJ(snun + (1− sn)un+1)−GJ(u†)∥

]
∥un+1 − u†∥.

Since ∥un+1 − u†∥ − ∥un − u†∥ > 0 and for the fact that G and J are Lipschitz,
we have the following estimate:

αn

(1− γn(1− sn))
∥un+1 − u†∥

≤
(

αn

(1− γn(1− sn))
+

α2
n

(1− γn(1− sn))2

)
∥ψ(un)− u†∥

+
α2
n

(1− γn(1− sn))2
∥un − u†∥+

(
γnωn

(1− γn(1− sn))

+
γnωnαn

(1− γn(1− sn))2

)
∥GJ(snun + (1− sn)un+1)−GJ(u†)∥.
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Thus,

∥un+1 − u†∥ ≤
(
1 +

αn

(1− γn(1− sn))

)
∥ψ(un)− u†∥

+
αn

(1− γn(1− sn))
∥un − u†∥

+

(
γnωn

αn

+
γnωnαn

(1− γn(1− sn))αn

)
LL1∥snun + (1− sn)un+1 − u†∥

and

∥un+1 − u†∥ ≤
(
1 +

αn

(1− γn(1− sn))

)
∥ψ(un)− u†∥

+
αn

(1− γn(1− sn))
∥un − u†∥

+
ωn

αn

(
γn +

γnαn

(1− γn(1− sn))

)
LL1

(
sn∥un − u†∥+ (1− sn)∥un+1 − u†∥

)
.

From the assumptions on the sequences {αn}, {ωn}, {un}, and {ψ(un)}, we have

∥un+1 − u†∥ ≤ r

4
+
r

4
+

1

4LL1

2LL1

(
snr + (1− sn)∥un+1 − u†∥

)
.

It follows that
∥un+1 − u†∥ ≤ r,

a contradiction. Thus, the sequence {un} is in B from all integers n ≥ N0 and
{un} is bounded. Therefore, the sequences {ψ(un)} and {GJ(un)} are bounded.
Furthermore, we prove that lim

n→∞
∥un+1 − un∥ = 0. From (3.2), we have

∥un+1 − un∥ =
αn

(1− γn(1− sn))
∥ψ(un)− un∥

+
γnωn

(1− γn(1− sn))
∥GJ(snun + (1− sn)un+1)∥.

Since αn → 0 as n → ∞ and ωn = o(αn), it follows that lim
n→∞

∥un+1 − un∥ = 0.

Now, we prove that lim sup
n→∞

〈
ψ(un)− u†, j(un+1 − u†)

〉
≤ 0, where u† ∈ Kmin ∩

(GJ)−1(0). Since the sequences {un} and {ψ(un)} are bounded, there exists ν > 0
(sufficiently large) such that ψ(un), un ∈ B1 := Bν(u

†) (open ball wit radius ν and
center u†) for all n ∈ N . Furthermore, the set B1 is a bounded closed and convex
nonempty subset of M. By the convexity of B1, we have (1− t)u†+ tψ(un) ∈ B1,
where t ∈ (0, 1). Then, it follows from the definition of f that f(u†) ≤ f((1 −
t)u† + tψ(un)). Using Lemma 2.6, we have

∥un−u†−t(ψ(un)−u†)∥2 ≤ ∥un−u†∥2−2t⟨ψ(un)−u†, j(un−u†−t(ψ(un)−u†))⟩.
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Thus taking Banach limit over n ∈ N implies
µn∥un − u† − t(ψ(un)− u†)∥2 ≤µn∥un − u†∥2

− 2tµn

〈
ψ(un)− u†, j(un − u† − t(ψ(un)− u†))

〉
,

which means that
2tµn

〈
ψ(un)− u†, j(un − u† − t(ψ(un)− u†))

〉
≤ µn∥un − u†∥2 − µn∥un − u† − t(ψ(un)− u†)∥2

= f(u†)− f(u† + t(ψ(un)− u†)) ≤ 0.

Thus,
µn

〈
ψ(un)− u†, j(un − u† − t(ψ(un)− u†))

〉
≤ 0.

By using the weakly lower semi-continuity of the norm on M, we have〈
ψ(un)−u†, j(un−u†)⟩− ⟨ψ(un)−u†, j(un−u†)− t(ψ(un)−u†))

〉
→ 0 as t→ 0.

Therefore, for all ε > 0, there exists δ > 0 such that for all t ∈ (0, δ) and n ∈ N,〈
ψ(un)− u†, j(un − u†)

〉
<

〈
ψ(un)− u†, j(un − u†)− t(ψ(un)− u†))

〉
+ ε.

Hence
µn

〈
ψ(un)− u†, j(un − u†)⟩ < µn

〈
ψ(un)− u†, j(un − u†)− t(ψ(un)− u†))⟩+ ε.

Since ε is arbitrary small, we get
µn

〈
ψ(un)− u†, j(un − u†)

〉
≤ 0.

Since the norm of M is uniformly Gateaux differentiable, J is uniformly norm to
weak∗ continuous on each bounded subset of M. Then

lim
n→∞

(〈
ψ(un)− u†, j(un+1 − u†)

〉
−

〈
ψ(un)− u†, j(un − u†)

〉)
= 0.

Therefore, the sequence
{
⟨ψ(un)− u†, j(un − u†)⟩

}
satisfies all assumptions of

Proposition 2.1, which implies that
lim sup
n→∞

〈
ψ(un)− u†, j(un+1 − u†)

〉
≤ 0.

Finally, we show that ∥un − u†∥ → 0 as n→ ∞, as follows:
∥un+1 − u†∥2 =∥un+1 − un + un − u†∥2

=

∥∥∥∥un − u† +
αn

1− γn(1− sn)
(ψ(un)− un)

− γnωn

1− γn(1− sn)
GJ(snun + (1− sn)un+1)

∥∥∥∥2

=

∥∥∥∥(1− αn

1− γn(1− sn)

)
(un − u†) +

αn

1− γn(1− sn)
(ψ(un)− u†)

− γnωn

1− γn(1− sn)
GJ(snun + (1− sn)un+1)

∥∥∥∥2
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and
∥un+1 − u†∥2

≤
(
1− αn

1− γn(1− sn)

)2

∥un − u†∥2 + 2

〈
αn

1− γn(1− sn)
(ψ(un)− u†)

− γnωn

1− γn(1− sn)
GJ(snun + (1− sn)un+1), j(un+1 − u†)

〉
=

(
1− αn

1− γn(1− sn)

)
∥un − u†∥2 + 2

〈
αn

1− γn(1− sn)
(ψ(un)− u†)

− γnωn

1− γn(1− sn)
GJ(snun + (1− sn)un+1), j(un+1 − u†)

〉
.

Take Q := sup{∥un − u†∥}, because {un} is a bounded sequence. Since G and J
are Lipschitz and continuous, we have

∥un+1 − u†∥2 ≤
(
1− αn

1− γn(1− sn)

)
∥un − u†∥2

+
2αn

1− γn(1− sn)

〈
(ψ(un)− u†), j(un+1 − u†)

〉
+

2γnω

1− γn(1− sn)
∥GJ(snun + (1− sn)un+1)−GJ(u†)∥

∥un+1 − u†∥

≤
(
1− αn

1− γn(1− sn)

)
∥un − u†∥2 + ηn,

where ηn = 2αn

1−γn(1−sn)

〈
(ψ(un)− u†), j(un+1 − u†)

〉
+ 2γnω

1−γn(1−sn)
LL1Q

2. Letting
θn =

αn

1− γn(1− sn)
, then from Lemma 2.2, we obtain

∥un − u†∥ = 0 as n→ ∞.

Thus, the sequence {un} converges strongly to the solution u†, and this completes
the proof. □
Theorem 3.2. Let M, G, and J be defined as in Theorem 3.1. Let {sn} be a
sequence in (s, 1] with s ∈ (0, 1). Let u ∈ M, and for a given u1 ∈ M, define the
sequence {un} by

un+1 = αnu+ βnun + γn(I − ωnGJ)(snun + (1− sn)un+1),

where the sequences {αn}, {βn}, {γn}, and {ωn} are in the interval [0, 1] satisfying
assumptions (H1) and (H2). Assume that Kmin ∩ (GJ)−1(0) ̸= ∅. Then the
sequence {un} strongly converges to an element u† ∈ (GJ)−1(0).

Corollary 3.3. Let M, G, J , and ψ be defined as in Theorem 3.1. For a given
u1 ∈ M, define the sequence {un} by

un+1 = αnψ(un) + βnun + γn(I − ωnGJ)(un+1),
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where the sequences {αn}, {βn}, {γn}, and {ωn} are in the interval [0, 1] satisfying
assumptions (H1) and (H2). Assume that Kmin ∩ (GJ)−1(0) ̸= ∅. Then the
sequence {un} strongly converges to an element u† ∈ (GJ)−1(0).

Corollary 3.4 ([20]). Let M, G, J , and ψ be defined as in Theorem 3.1. For
given u1 ∈ M, define the sequence {un} by

un+1 = αnψ(un) + βnun + γn(I − ωnGJ)

(
un + un+1

2

)
,

where the sequences {αn}, {βn}, {γn}, and {ωn} are in the interval [0, 1] satisfying
assumptions (H1) and (H2). Assume that Kmin ∩ (GJ)−1(0) ̸= ∅. Then the
sequence {un} strongly converges to an element u† ∈ (GJ)−1(0).

Let K be a nonempty subset of a smooth, uniformly convex Banach space M
with dual M∗. Let K∗ be the dual space of K. A mapping S : K∗ → M is said
to be semi-pseudo if

GJ(u) := (J−1 − S)J(u)

for all J(u) ∈ K∗ is monotone mapping, where J is the normalized duality
mapping from M into M∗. We denote the set of all semi-fixed points of S
by Fs(S) := {J(u) ∈ K∗ : SJ(u) = u}. It is noted that a zero of a mono-
tone mapping G is a semi-fixed point of a semi-pseudo mapping S. If M is a
Hilbert space, the definition of semi-pseudo and semi-fixed point of S coincides
with pseudo-contraction and fixed point of pseudo-contraction S, respectively;
see [23].

Corollary 3.5. Let K be a nonempty closed and convex subset of a 2-uniformly
smooth and uniformly convex Banach space M having dual M∗. Let K∗ be the
dual space of K. Let S : K∗ → K be an L-Lipschitz continuous semi-pseudo
mapping with Fs(S) ̸= ∅ and let G := (J−1−S) be a maximal monotone mapping
on K∗. Let ψ : M → M be a contraction mapping with coefficient ρ ∈ (0, 1).
Let {sn} be a sequence in (s, 1] with s ∈ (0, 1). For a given u1 ∈ M, define the
sequence {un} by

un+1 = αnψ(un) + βnun + γn((1− ωn)I + ωnGJ)(snun + (1− sn)un+1),

where J is the normalized duality mapping from M into M∗ and the sequences
{αn}, {βn}, {γn}, and {ωn} are in the interval [0, 1] satisfying assumptions (H1)
and (H2). Assume that Kmin ∩ Fs(S) ̸= ∅. Then the sequence {un} strongly
converges to u†, where J(u†) ∈ Fs(S).

4. Convex minimization problem

Now, we present a convex minimization problem for a convex function ∇ :
M → R.
The following results are well known.

Remark 4.1. Let ∇ : M → R be a differentiable convex function and let u† ∈ M.
Then the point u† is a minimizer of ∇ on M if and only if d∇(u†) = 0.



ZEROS OF MONOTONE OPERATORS IN BANACH SPACES 65

Definition 4.2. A function ∇ : M → R is said to be strongly convex if there
exists β > 0 such that the following condition holds:

∇(µu+ (1− µ)v) ≤ µ∇u+ (1− µ)∇v − β∥u− v∥2

for every u, v ∈ M with u ̸= v and µ ∈ (0, 1).

Lemma 4.3. Let M be normed linear space and let ∇ : M → R be a convex
differentiable function. Suppose that ∇ is strongly convex. Then the differential
map d∇ : M → M∗ is strongly monotone, that is, there exists k > 0 such that

⟨d∇u− d∇v, u− v⟩ ≥ k∥u− v∥2 ∀u, v ∈ M.

Now we present the following result.

Theorem 4.4. Let M and ψ be defined as in Theorem 3.1. Let d∇ : M∗ → M
be an L-Lipschitz continuous monotone mapping such that d∇−1(0) ̸= ∅. Let
{sn} be a sequence in (s, 1] with s ∈ (0, 1). For given u1 ∈ M, define the sequence
{un} by

un+1 = αnψ(un) + βnun + γn(I − ωnd∇J)(snun + (1− sn)un+1)

where J is the normalized duality mapping from M into M∗ and the sequences
{αn}, {βn} and {ωn} are in the interval [0, 1] satisfying assumptions (H1) and
(H2). Assume that Kmin ∩ (d∇J)−1(0) ̸= ∅. Then the sequence {un} converges
strongly to a unique minimizer u† of ∇ in M.

Proof. It follows from Remark 4.1 that ∇ has a unique minimizer u† and is ob-
tained by d∇(u†) = 0. From Lemma 4.3 and using the fact that the differential
mapping d∇ : M → M∗ is Lipschitz, considering the result of Theorem 3.1, we
can complete the proof. □

5. Fredholm integral equation

Let Y = L2[0, 1] be the space of square integrable functions u : [0, 1] → R
endowed with inner product ⟨u, v⟩2 =

∫ 1

0
u(κ)v(κ)dκ. Now we discuss the solution

of following Fredholm integral equation:

u(κ) = ϕ(κ) + λ

∫ 1

0

τ(κ, ν)ξ(κ, ν, u(ν))dν, κ, ν ∈ [0, 1] = V. (5.1)

In order to present solution of above equation, we take the following postulates:
(A1) The functions ξ : V × V × R → R and ϕ : V → R are continuous.
(A2) ξ is Lipschitz continuous, that is, for all u, v ∈ Y ,

|ξ(κ, ν, u)− ξ(κ, ν, v)| ≤ L|u(κ)− v(κ)|, κ ∈ V.

(A3) τ : V × V → R is continuous for all (κ, ν) ∈ V × V, |τ(κ, ν)| ≤ c, where
c > 0.

(A4) λcL ≤ 1 and λ > 0.

Now, we consider the mapping S : Y → Y defined as

(Su)(κ) = ϕ(κ) + λ

∫ 1

0

τ(κ, ν)ξ(κ, ν, u(ν))dν, κ ∈ [0, 1] = V. (5.2)
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Now, we observe that S is a nonexpansive mapping. For this, for every u, v ∈ Y ,
we have

|Su(κ)− Sv(κ)|2 =
∣∣∣∣(ϕ(κ) + λ

∫ 1

0

τ(κ, ν)ξ(κ, ν, u(ν))dν

)
−
(
ϕ(κ) + λ

∫ 1

0

τ(κ, ν)ξ(κ, ν, v(ν))dν

)∣∣∣∣2
=λ2

∣∣∣∣∫ 1

0

τ(κ, ν)(ξ(κ, ν, u(ν))− ξ(κ, ν, v(ν)))dν

∣∣∣∣2
≤
∫ 1

0

|τ(κ, ν)ξ(κ, ν, u(ν))− ξ(κ, ν, v(ν))|2dν

≤λ2
∫ 1

0

|τ(κ, ν)|2|ξ(κ, ν, u(ν))− ξ(κ, ν, v(ν))|2dν

≤λ2c2L2

∫ 1

0

|u(ν)− v(ν)|2dν.

This implies that
∥S(u)− S(v)∥ ≤ λcL∥u− v∥ ≤ ∥u− v∥

and S is a nonexpansive mapping. Define
B = {u ∈ Y : ∥u∥ ≤ r},

where r is sufficiently large. Then B is the closed ball of Y of radius r with center
at origin. It can be easily seen that S(B) ⊆ B. From [5, Theorem], the operator
S has a fixed point in B, and this fixed point of operator is a solution of nonlinear
integral equation (5.1).

Theorem 5.1. Let Y = L2[0, 1] be a Hilbert space defined above and let S : Y → Y
be an operator defined in (5.2). Let ψ : C → C be a contraction with coefficient
ρ ∈ (0, 1). Let {sn} be a sequence in (s, 1] with s ∈ (0, 1). For a given u1 ∈ M,
define the sequence {un} by

un+1 = αnψ(un) + βnun + γn(I − ωn(I − S))(snun + (1− sn)un+1),

where I is the identity mapping on Y and the sequences {αn}, {βn}, {γn}, and
{ωn} are in the interval [0, 1] satisfying assumptions (H1) and (H2). Assume
that Kmin ∩ (1 − S)−1(0) ̸= ∅. Then the sequence {un} strongly converges to the
solution of nonlinear integral equation (5.1).

Proof. Let G = I − S. Then the fixed point of the operator S is a zero of the
operator G. Now we show that operator G is monotone. For this, for all u, v ∈ Y
and by nonexpansiveness of S, we have

⟨G(u)−G(v), u− v⟩ = ⟨(I − S)(u)− (I − S)(v), u− v⟩
= ⟨u− S(u)− v + S(v), u− v⟩
= ∥u− v∥2 − ⟨S(u)− S(v), u− v⟩
≥ ∥u− v∥2 − ∥S(u)− S(v)∥∥u− v∥
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≥ ∥u− v∥2 − ∥u− v∥2 = 0.

Again it can be seen that G is a Lipschitz operator, that is, for all u, v ∈ Y , by
the nonexpansiveness of S, we have

∥G(u)−G(v)∥ = ∥(I − S)(u)− (I − S)(v)∥
= ∥u− v − (S(u)− S(v))∥ ≤ ∥u− v∥+ ∥(S(u)− S(v))∥
≤ ∥u− v∥+ ∥u− v∥ = 2∥u− v∥.

Therefore, in view of Theorem 3.1, the required conclusion follows. □
Example 5.2. Let us consider the following nonlinear integral equation:

u(κ) =

[
sin

(πκ
2

)
− 4

3π

(
1 +

1

π

)
κ

]
+

∫ 1

0

κ(2 + ν)u(ν)

3
dν, κ ∈ [0, 1]. (5.3)

It easily follows that (5.3) is a particular case of (5.1) with

ϕ(κ) = sin
(πκ

2

)
− 4

3π

(
1 +

1

π

)
κ and ψ(κ, ν, u) =

κ(2 + ν)u(ν)

3
.

For any u, v ∈ Y and κ, ν ∈ [0, 1], we obtain

|ψ(κ, ν, u)− ψ(κ, ν, v)| =

∣∣∣∣κ(2 + ν)u

3
− κ(2 + ν)v

3

∣∣∣∣
≤ κ(2 + ν)

3
|u− v| ≤ |u− v|.

It is quite natural that ϕ : J → R is a continuous function. Therefore, Fredholm
integral equation (5.3) has a solution. It can be easily seen that u(κ) = sin

(
πκ
2

)
is a solution of integral equation (5.3).

6. Numerical results

In this section, we show the effectiveness and efficiency of the algorithm (3.1)
over SIMR. More precisely, we present a numerical example to settle our claims.

Example 6.1. Let M = R endowed with the usual norm ∥ · ∥ and let G, J :
M → M be mappings defined as

G(u) = Lu, L > 0

and J(u) = u for all u ∈ M.

Let ψ : M → M be a contraction mapping defined as

ψ(u) =

{
u
2

if G(u) ̸= 0

u if G(u) = 0.

Now,
∥G(u)−G(v)∥ = ∥Lu− Lv∥ = L∥u− v∥.

Then G is an L-Lipschitz continuous monotone, J is 1-Lipschitz continuous, ψ is
a contractive mapping with ρ = 1

2
, and (GJ)−1(0) = 0.
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We choose αn = 1
(n+1)

, βn = n−1
(n+1)

, γn = 1
(n+1)

, and ωn = 1
n(n+1)

. It can be
seen that all these parameters satisfy conditions (H1) and (H2). The convergence
behaviors of new algorithm (3.1) and SIMR are presented in Table 1 and Figures
1 and 2 below. We make different choices of coefficient (sn) and initial guesses.
We set ∥un+1 − un∥ < 10−5 as our stopping criterion.

Figure 1. Convergence behavior for initial guess u1 = 0.5 and
L = 3.

Figure 2. Convergence behavior for initial guess u1 = 0.5 and
L = 20.
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Figure 3. Convergence behavior for initial guess u1 = 0.8 and
L = 0.9.

Figure 4. Convergence behavior initial guess u1 = 0.8 and L = 5.
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Figure 5. Convergence behavior for initial guess u1 = 1 and L =
0.25.

Figure 6. Convergence behavior for initial guess u1 = 1 and L =
10.



ZEROS OF MONOTONE OPERATORS IN BANACH SPACES 71

Table 1. Influence of initial guess: Comparison of both iteration processes.

For initial point u1 = 0.5 and L = 3
Algorithm Convergence in number of iterations

SIMA 182
New Algorithm (3.1) with sn = 0.99 15

For initial point u1 = 0.5 and L = 20
SIMA 73

New Algorithm (3.1) with sn = 0.1 26
For initial point u1 = 0.8 and L = 0.9

SIMA 765
New Algorithm (3.1) with sn = 0.1 573

For initial point u1 = 0.8 and L = 5
SIMA 181

New Algorithm (3.1) with sn = 0.35 36
For initial point u1 = 1 and L = 0.25

SIMA 1141
New Algorithm (3.1) with sn = 0.01 844

For initial point u1 = 1 and L = 10
SIMA 332

New Algorithm (3.1) with sn = 0.13 16

Observations:
From Table 1 and Figures 1–6, we note that for different choices of initial guesses
and parameters L, new algorithm (3.1) converges faster than SIMA.
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